Skip to main content
Anesthesia Progress logoLink to Anesthesia Progress
. 1990 Jul;37(4):181–185.

A study of central opioid receptor involvement in nitrous oxide analgesia in mice.

D C Chen 1, R M Quock 1
PMCID: PMC2148669  PMID: 1965769

Abstract

This study was undertaken to assess the sensitivity of nitrous oxide (N2O) analgesia to antagonism by intrathecally (IT) and intracerebroventricularly (ICV) administered antagonists selective for kappa- and mu-opioid receptors. Male ICR mice were pretreated IT or ICV with the kappa antagonist nor-binaltorphimine (nor-BNI), 1 or 50 nmol, respectively, or distilled water (control), then exposed to N2O (50% or 75% in oxygen). Compared with IT control mice, IT nor-BNI-pretreated mice responded with significantly less analgesia. Compared with ICV control mice, ICV nor-BNI-pretreated mice also showed markedly reduced analgesic response. Other mice were pretreated IT or ICV with either the selective and irreversible mu antagonist beta-funaltrexamine (beta-FNA, 5.0 micrograms) or distilled water (control). When exposed to N2O 24 h later, beta-FNA-pretreated and control mice exhibited comparable analgesic responses. These preliminary results suggest that N2O analagesia in mice may involve spinal and supraspinal kappa-opioid receptors but not mu-opioid receptors.

Full text

PDF
181

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berkowitz B. A., Finck A. D., Hynes M. D., Ngai S. H. Tolerance to nitrous oxide analgesia in rats and mice. Anesthesiology. 1979 Oct;51(4):309–312. doi: 10.1097/00000542-197910000-00006. [DOI] [PubMed] [Google Scholar]
  2. Berkowitz B. A., Finck A. D., Ngai S. H. Nitrous oxide analgesia: reversal by naloxone and development of tolerance. J Pharmacol Exp Ther. 1977 Dec;203(3):539–547. [PubMed] [Google Scholar]
  3. Berkowitz B. A., Ngai S. H., Finck A. D. Nitrous oxide "analgesia": resemblance to opiate action. Science. 1976 Nov 26;194(4268):967–968. doi: 10.1126/science.982058. [DOI] [PubMed] [Google Scholar]
  4. Chapman W. P., Arrowood J. G., Beecher H. K. THE ANALGETIC EFFECTS OF LOW CONCENTRATIONS OF NITROUS OXIDE COMPARED IN MAN WITH MORPHINE SULPHATE. J Clin Invest. 1943 Nov;22(6):871–875. doi: 10.1172/JCI101461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HALEY T. J., MCCORMICK W. G. Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br J Pharmacol Chemother. 1957 Mar;12(1):12–15. doi: 10.1111/j.1476-5381.1957.tb01354.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Heyman J. S., Mulvaney S. A., Mosberg H. I., Porreca F. Opioid delta-receptor involvement in supraspinal and spinal antinociception in mice. Brain Res. 1987 Sep 8;420(1):100–108. doi: 10.1016/0006-8993(87)90244-7. [DOI] [PubMed] [Google Scholar]
  7. Hylden J. L., Wilcox G. L. Intrathecal morphine in mice: a new technique. Eur J Pharmacol. 1980 Oct 17;67(2-3):313–316. doi: 10.1016/0014-2999(80)90515-4. [DOI] [PubMed] [Google Scholar]
  8. Moskowitz A. S., Goodman R. R. Autoradiographic analysis of mu1, mu2, and delta opioid binding in the central nervous system of C57BL/6BY and CXBK (opioid receptor-deficient) mice. Brain Res. 1985 Dec 23;360(1-2):108–116. doi: 10.1016/0006-8993(85)91226-0. [DOI] [PubMed] [Google Scholar]
  9. Paterson S. J., Robson L. E., Kosterlitz H. W. Classification of opioid receptors. Br Med Bull. 1983 Jan;39(1):31–36. doi: 10.1093/oxfordjournals.bmb.a071787. [DOI] [PubMed] [Google Scholar]
  10. Paul D., Bodnar R. J., Gistrak M. A., Pasternak G. W. Different mu receptor subtypes mediate spinal and supraspinal analgesia in mice. Eur J Pharmacol. 1989 Sep 22;168(3):307–314. doi: 10.1016/0014-2999(89)90792-9. [DOI] [PubMed] [Google Scholar]
  11. Quock R. M., Graczak L. M. Influence of narcotic antagonist drugs upon nitrous oxide analgesia in mice. Brain Res. 1988 Feb 2;440(1):35–41. doi: 10.1016/0006-8993(88)91156-0. [DOI] [PubMed] [Google Scholar]
  12. Quock R. M., Kouchich F. J., Tseng L. F. Does nitrous oxide induce release of brain opioid peptides? Pharmacology. 1985;30(2):95–99. doi: 10.1159/000138056. [DOI] [PubMed] [Google Scholar]
  13. Quock R. M., Kouchich F. J., Tseng L. F. Influence of nitrous oxide upon regional brain levels of methionine-enkephalin-like immunoreactivity in rats. Brain Res Bull. 1986 Mar;16(3):321–323. doi: 10.1016/0361-9230(86)90052-3. [DOI] [PubMed] [Google Scholar]
  14. Schmauss C., Yaksh T. L. In vivo studies on spinal opiate receptor systems mediating antinociception. II. Pharmacological profiles suggesting a differential association of mu, delta and kappa receptors with visceral chemical and cutaneous thermal stimuli in the rat. J Pharmacol Exp Ther. 1984 Jan;228(1):1–12. [PubMed] [Google Scholar]
  15. Takemori A. E., Ho B. Y., Naeseth J. S., Portoghese P. S. Nor-binaltorphimine, a highly selective kappa-opioid antagonist in analgesic and receptor binding assays. J Pharmacol Exp Ther. 1988 Jul;246(1):255–258. [PubMed] [Google Scholar]
  16. Ward S. J., Portoghese P. S., Takemori A. E. Pharmacological characterization in vivo of the novel opiate, beta-funaltrexamine. J Pharmacol Exp Ther. 1982 Mar;220(3):494–498. [PubMed] [Google Scholar]
  17. Zuniga J. R., Joseph S. A., Knigge K. M. The effects of nitrous oxide on the central endogenous pro-opiomelanocortin system in the rat. Brain Res. 1987 Sep 8;420(1):57–65. doi: 10.1016/0006-8993(87)90239-3. [DOI] [PubMed] [Google Scholar]
  18. Zuniga J. R., Joseph S. A., Knigge K. M. The effects of nitrous oxide on the secretory activity of pro-opiomelanocortin peptides from basal hypothalamic cells attached to cytodex beads in a superfusion in vitro system. Brain Res. 1987 Sep 8;420(1):66–72. doi: 10.1016/0006-8993(87)90240-x. [DOI] [PubMed] [Google Scholar]

Articles from Anesthesia Progress are provided here courtesy of American Dental Society of Anesthesiology

RESOURCES