Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Feb;161(2):681–686. doi: 10.1128/jb.161.2.681-686.1985

Proton circulation in Vibrio costicola.

F Hamaide, D J Kushner, G D Sprott
PMCID: PMC214936  PMID: 2981820

Abstract

The importance of proton movements was assessed in the moderate halophile Vibrio costicola. When anaerobic cells in acidic buffer (pH 6.5) were given an O2 pulse, protons were extruded regardless of the presence of Na+. At pH 8.5, however, V. costicola produced an acidic response to an O2 pulse in the absence of Na+ and an alkaline response when Na+ was present. An Na+/H+ antiport activity was confirmed at pH 8.5. All of these effects were prevented by protonophores or butanol treatment. Growth in complex medium at pH 8.5 was prevented by a high concentration (50 microM) of carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) or a low concentration (5 microM) of another protonophore, 3,3',4',5-tetrachlorosalicylanilide (TCS). The relative ineffectiveness of the former protonophore was caused by the proteose peptone and tryptone ingredients of the complex medium, since 5 microM completely prevented growth in their absence. The results are explained by a primary respiratory-linked proton efflux coupled to a secondary Na+/H+ antiport operating at alkaline pH. Evidence was seen for a role of Na+ in stimulating proton influx at alkaline pH, presumably via the pH homeostasis mechanism.

Full text

PDF
681

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Booth I. R., Kroll R. G. Regulation of cytoplasmic pH (pH1) in bacteria and its relationship to metabolism. Biochem Soc Trans. 1983 Jan;11(1):70–72. doi: 10.1042/bst0110070. [DOI] [PubMed] [Google Scholar]
  2. Borbolla M. G., Rosen B. P. Energetics of sodium efflux from Escherichia coli. Arch Biochem Biophys. 1984 Feb 15;229(1):98–103. doi: 10.1016/0003-9861(84)90134-6. [DOI] [PubMed] [Google Scholar]
  3. Dimroth P. Decarboxylation and transport. Biosci Rep. 1982 Nov;2(11):849–860. doi: 10.1007/BF01114890. [DOI] [PubMed] [Google Scholar]
  4. Forsyth M. P., Kushner D. J. Nutrition and distribution of salt response in populations of moderately halophilic bacteria. Can J Microbiol. 1970 Apr;16(4):253–261. doi: 10.1139/m70-047. [DOI] [PubMed] [Google Scholar]
  5. Garcia M. L., Guffanti A. A., Krulwich T. A. Characterization of the Na+/H+ antiporter of alkalophilic bacilli in vivo: delta psi-dependent 22Na+ efflux from whole cells. J Bacteriol. 1983 Dec;156(3):1151–1157. doi: 10.1128/jb.156.3.1151-1157.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Guffanti A. A., Susman P., Blanco R., Krulwich T. A. The protonmotive force and alpha-aminoisobutyric acid transport in an obligately alkalophilic bacterium. J Biol Chem. 1978 Feb 10;253(3):708–715. [PubMed] [Google Scholar]
  7. HEYTLER P. G. uncoupling of oxidative phosphorylation by carbonyl cyanide phenylhydrazones. I. Some characteristics of m-Cl-CCP action on mitochondria and chloroplasts. Biochemistry. 1963 Mar-Apr;2:357–361. doi: 10.1021/bi00902a031. [DOI] [PubMed] [Google Scholar]
  8. Hamaide F., Kushner D. J., Sprott G. D. Proton motive force and Na+/H+ antiport in a moderate halophile. J Bacteriol. 1983 Nov;156(2):537–544. doi: 10.1128/jb.156.2.537-544.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hamaide F., Sprott G. D., Kushner D. J. Energetics of sodium-dependent alpha-aminoisobutyric acid transport in the moderate halophile Vibrio costicola. Biochim Biophys Acta. 1984 Jul 27;766(1):77–87. doi: 10.1016/0005-2728(84)90219-6. [DOI] [PubMed] [Google Scholar]
  10. Heefner D. L., Harold F. M. ATP-driven sodium pump in Streptococcus faecalis. Proc Natl Acad Sci U S A. 1982 May;79(9):2798–2802. doi: 10.1073/pnas.79.9.2798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jarrell K. F., Sprott G. D. The effects of ionophores and metabolic inhibitors on methanogenesis and energy-related properties of Methanobacterium bryantii. Arch Biochem Biophys. 1983 Aug;225(1):33–41. doi: 10.1016/0003-9861(83)90004-8. [DOI] [PubMed] [Google Scholar]
  12. Kitada M., Guffanti A. A., Krulwich T. A. Bioenergetic properties and viability of alkalophilic Bacillus firmus RAB as a function of pH and Na+ contents of the incubation medium. J Bacteriol. 1982 Dec;152(3):1096–1104. doi: 10.1128/jb.152.3.1096-1104.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krulwich T. A., Guffanti A. A., Bornstein R. F., Hoffstein J. A sodium requirement for growth, solute transport, and pH homeostasis in Bacillus firmus RAB. J Biol Chem. 1982 Feb 25;257(4):1885–1889. [PubMed] [Google Scholar]
  14. Krulwich T. A. Na+/H+ antiporters. Biochim Biophys Acta. 1983 Dec 30;726(4):245–264. doi: 10.1016/0304-4173(83)90011-3. [DOI] [PubMed] [Google Scholar]
  15. Tokuda H., Sugasawa M., Unemoto T. Roles of Na+ and K+ in alpha-aminoisobutyric acid transport by the marine bacterium Vibrio alginolyticus. J Biol Chem. 1982 Jan 25;257(2):788–794. [PubMed] [Google Scholar]
  16. Tokuda H., Unemoto T. Characterization of the respiration-dependent Na+ pump in the marine bacterium Vibrio alginolyticus. J Biol Chem. 1982 Sep 10;257(17):10007–10014. [PubMed] [Google Scholar]
  17. Tokuda H., Unemoto T. Growth of a marine Vibrio alginolyticus and moderately halophilic V. costicola becomes uncoupler resistant when the respiration-dependent Na+ pump functions. J Bacteriol. 1983 Nov;156(2):636–643. doi: 10.1128/jb.156.2.636-643.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Unemoto T., Hayashi M., Hayashi M. Na+-dependent activation of NADH oxidase in membrane fractions from halophilic Vibrio alginolyticus and V. costicolus. J Biochem. 1977 Nov;82(5):1389–1395. doi: 10.1093/oxfordjournals.jbchem.a131826. [DOI] [PubMed] [Google Scholar]
  19. Zilberstein D., Agmon V., Schuldiner S., Padan E. The sodium/proton antiporter is part of the pH homeostasis mechanism in Escherichia coli. J Biol Chem. 1982 Apr 10;257(7):3687–3691. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES