Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Feb;161(2):709–713. doi: 10.1128/jb.161.2.709-713.1985

Immunological investigation of the distribution of cytochromes related to the two terminal oxidases of Escherichia coli in other gram-negative bacteria.

R G Kranz, R B Gennis
PMCID: PMC214940  PMID: 2981822

Abstract

Monospecific antibodies were raised against the two terminal oxidase complexes of the aerobic respiratory chain of Escherichia coli. These are the cytochrome d and cytochrome o complexes. The antibodies were used to check for the occurrence of cross-reactive antigens in membrane preparations from a variety of gram-negative bacteria by rocket immunoelectrophoresis and immunoblotting techniques. With these criteria, proteins closely related to the cytochrome d complex of E. coli appeared to be widely distributed. Among the strains containing cytochrome d-related material were Serratia marcescens, Photobacterium phosphoreum, Salmonella typhimurium, Klebsiella pneumoniae, and Azotobacter vinelandii. The data suggest that the d-type terminal oxidase in many of these strains is associated in a complex with b-type and a1-type cytochromes, as has been found to be the case in E. coli. K. pneumoniae and S. typhimurium were also shown to have material cross-reactive to the E. coli cytochrome o complex.

Full text

PDF
709

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arima K., Oka T. Cyanide Resistance in Achromobacter I. Induced Formation of Cytochrome a(2) and Its Role in Cyanide-Resistant Respiration. J Bacteriol. 1965 Sep;90(3):734–743. doi: 10.1128/jb.90.3.734-743.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  3. Carver M. A., Jones C. W. The terminal respiratory chain of the methylotrophic bacterium Methylophilus methylotrophus. FEBS Lett. 1983 May 8;155(2):187–191. doi: 10.1016/0014-5793(82)80599-1. [DOI] [PubMed] [Google Scholar]
  4. Drabikowska A. K. Electron transport system of Salmonella typhimurium cells. Acta Biochim Pol. 1970;17(2):89–98. [PubMed] [Google Scholar]
  5. Ensley B. D., Jr, Finnerty W. R. Influences of growth substrates and oxygen on the electron transport system in Acinetobacter sp. HO1-N. J Bacteriol. 1980 Jun;142(3):859–868. doi: 10.1128/jb.142.3.859-868.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FELLMAN J. H., MILLS R. C. Succinoxidase system of Pasteurella tularensis. J Bacteriol. 1960 Jun;79:800–806. doi: 10.1128/jb.79.6.800-806.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GOUNARIS A. D., HAGER L. P. A resolution of the Escherichia coli pyruvate dehydrogenase complex. J Biol Chem. 1961 Apr;236:1013–1018. [PubMed] [Google Scholar]
  8. Green G. N., Kranz R. G., Lorence R. M., Gennis R. B. Identification of subunit I as the cytochrome b558 component of the cytochrome d terminal oxidase complex of Escherichia coli. J Biol Chem. 1984 Jun 25;259(12):7994–7997. [PubMed] [Google Scholar]
  9. Haddock B. A., Jones C. W. Bacterial respiration. Bacteriol Rev. 1977 Mar;41(1):47–99. doi: 10.1128/br.41.1.47-99.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haddock B. A. The reconstitution of oxidase activity in membranes derived from a 5-aminolaevulinic acid-requiring mutant of Escherichia coli. Biochem J. 1973 Dec;136(4):877–884. doi: 10.1042/bj1360877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harrison D. E. A study of the effect of growth conditions on chemostat-grown Klebsiella aerogenes and kinetic changes of A 500-nm absorption band. Biochim Biophys Acta. 1972 Jul 12;275(1):83–92. doi: 10.1016/0005-2728(72)90026-6. [DOI] [PubMed] [Google Scholar]
  12. Henry M. F., Vignais P. M. Induction by cyanide of cytochrome d in the plasma membrane of Paracoccus denitrificans. FEBS Lett. 1979 Apr 1;100(1):41–46. doi: 10.1016/0014-5793(79)81127-8. [DOI] [PubMed] [Google Scholar]
  13. Hoffman P. S., Irwin R. M., Carreira L. A., Morgan T. V., Ensley B. D., Dervartanian D. V. Studies of photochemical action spectra on N,N,N',N'-tetramethyl-p-phenylenediamine-oxidase-negative mutants of Azotobacter vinelandii. Eur J Biochem. 1980 Mar;105(1):177–185. doi: 10.1111/j.1432-1033.1980.tb04487.x. [DOI] [PubMed] [Google Scholar]
  14. Hoffman P. S., Morgan T. V., DerVartanian D. V. Respiratory-chain characteristics of mutants of Azotobacter vinelandii negative to tetramethyl-p-phenylenediamine oxidase. Eur J Biochem. 1979 Oct;100(1):19–27. doi: 10.1111/j.1432-1033.1979.tb02029.x. [DOI] [PubMed] [Google Scholar]
  15. Jones C. W., Redfearn E. R. Preparation of red and green electron transport particles from Azotobacter vinelandii. Biochim Biophys Acta. 1967 Sep 6;143(2):354–362. doi: 10.1016/0005-2728(67)90089-8. [DOI] [PubMed] [Google Scholar]
  16. Jurtshuk P., Jr, Mueller T. J., Acord W. C. Bacterial terminal oxidases. CRC Crit Rev Microbiol. 1975 May;3(4):399–468. doi: 10.3109/10408417509108757. [DOI] [PubMed] [Google Scholar]
  17. Kauffman H. F., van Gelder B. F. The respiratory chain of Azotobacter vinelandii. I. Spectral properites of cytochrome d. Biochim Biophys Acta. 1973 May 30;305(2):260–267. doi: 10.1016/0005-2728(73)90174-6. [DOI] [PubMed] [Google Scholar]
  18. Kauffman H. F., van Gelder B. F. The respiratory chain of Azotobacter vinelandii. II. The effect of cyanide on cytochrome d. Biochim Biophys Acta. 1973 Sep 26;314(3):276–283. doi: 10.1016/0005-2728(73)90112-6. [DOI] [PubMed] [Google Scholar]
  19. King M. T., Drews G. Isolation and partial characterization of the cytochrome oxidase from Rhodopseudomonas palustris. Eur J Biochem. 1976 Sep;68(1):5–12. doi: 10.1111/j.1432-1033.1976.tb10759.x. [DOI] [PubMed] [Google Scholar]
  20. Kita K., Kasahara M., Anraku Y. Formation of a membrane potential by reconstructed liposomes made with cytochrome b562-o complex, a terminal oxidase of Escherichia coli K12. J Biol Chem. 1982 Jul 25;257(14):7933–7935. [PubMed] [Google Scholar]
  21. Kita K., Konishi K., Anraku Y. Terminal oxidases of Escherichia coli aerobic respiratory chain. I. Purification and properties of cytochrome b562-o complex from cells in the early exponential phase of aerobic growth. J Biol Chem. 1984 Mar 10;259(5):3368–3374. [PubMed] [Google Scholar]
  22. Kita K., Konishi K., Anraku Y. Terminal oxidases of Escherichia coli aerobic respiratory chain. II. Purification and properties of cytochrome b558-d complex from cells grown with limited oxygen and evidence of branched electron-carrying systems. J Biol Chem. 1984 Mar 10;259(5):3375–3381. [PubMed] [Google Scholar]
  23. Koland J. G., Miller M. J., Gennis R. B. Reconstitution of the membrane-bound, ubiquinone-dependent pyruvate oxidase respiratory chain of Escherichia coli with the cytochrome d terminal oxidase. Biochemistry. 1984 Jan 31;23(3):445–453. doi: 10.1021/bi00298a008. [DOI] [PubMed] [Google Scholar]
  24. Kranz R. G., Barassi C. A., Miller M. J., Green G. N., Gennis R. B. Immunological characterization of an Escherichia coli strain which is lacking cytochrome d. J Bacteriol. 1983 Oct;156(1):115–121. doi: 10.1128/jb.156.1.115-121.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kranz R. G., Gennis R. B. A quantitative radioimmunological screening method for specific gene products. Anal Biochem. 1982 Dec;127(2):247–257. doi: 10.1016/0003-2697(82)90169-5. [DOI] [PubMed] [Google Scholar]
  26. Kranz R. G., Gennis R. B. Characterization of the cytochrome d terminal oxidase complex of Escherichia coli using polyclonal and monoclonal antibodies. J Biol Chem. 1984 Jun 25;259(12):7998–8003. [PubMed] [Google Scholar]
  27. Kranz R. G., Gennis R. B. Immunological characterization of the cytochrome o terminal oxidase from Escherichia coli. J Biol Chem. 1983 Sep 10;258(17):10614–10621. [PubMed] [Google Scholar]
  28. MOSS F. Adaptation of the cytochromes of Aerobacter aerogenes in response to environmental oxygen tension. Aust J Exp Biol Med Sci. 1956 Oct;34(5):395–405. doi: 10.1038/icb.1956.48. [DOI] [PubMed] [Google Scholar]
  29. MOYED H. S., O'KANE D. J. Enzymes and coenzymes of the pyruvate oxidase of Proteus. J Biol Chem. 1956 Feb;218(2):831–840. [PubMed] [Google Scholar]
  30. Matsushita K., Patel L., Gennis R. B., Kaback H. R. Reconstitution of active transport in proteoliposomes containing cytochrome o oxidase and lac carrier protein purified from Escherichia coli. Proc Natl Acad Sci U S A. 1983 Aug;80(16):4889–4893. doi: 10.1073/pnas.80.16.4889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Matsushita K., Shinagawa E., Adachi O., Ameyama M. o-Type cytochrome oxidase in the membrane of aerobically grown Pseudomonas aeruginosa. FEBS Lett. 1982 Mar 22;139(2):255–258. doi: 10.1016/0014-5793(82)80864-8. [DOI] [PubMed] [Google Scholar]
  32. Matsushita K., Yamada M., Shinagawa E., Adachi O., Ameyama M. Membrane-bound respiratory chain of Pseudomonas aeruginosa grown aerobically. A KCN-insensitive alternate oxidase chain and its energetics. J Biochem. 1983 Apr;93(4):1137–1144. doi: 10.1093/oxfordjournals.jbchem.a134239. [DOI] [PubMed] [Google Scholar]
  33. McInerney M. J., Holmes K. S., DerVartanian D. V. Effect of O2 limitation on growth and respiration of the wild type and an ascorbate-tetramethyl-p-phenylenediamine-oxidase-negative mutant strain of Azotobacter vinelandii. J Bioenerg Biomembr. 1982 Dec;14(5-6):451–456. doi: 10.1007/BF00743070. [DOI] [PubMed] [Google Scholar]
  34. Miller M. J., Gennis R. B. The purification and characterization of the cytochrome d terminal oxidase complex of the Escherichia coli aerobic respiratory chain. J Biol Chem. 1983 Aug 10;258(15):9159–9165. [PubMed] [Google Scholar]
  35. Pelliccione N., Jaffin B., Sobel M. E., Krulwich T. A. Induction of the phosphoenolpyruvate: hexose phosphotransferase system associated with relative anaerobiosis in an obligate aerobe. Eur J Biochem. 1979 Mar 15;95(1):69–75. doi: 10.1111/j.1432-1033.1979.tb12940.x. [DOI] [PubMed] [Google Scholar]
  36. Poole R. K. Bacterial cytochrome oxidases. A structurally and functionally diverse group of electron-transfer proteins. Biochim Biophys Acta. 1983 Sep 15;726(3):205–243. doi: 10.1016/0304-4173(83)90006-x. [DOI] [PubMed] [Google Scholar]
  37. Poole R. K., Haddock B. A. Effects of sulphate-limited growth in continuous culture on the electron-transport chain and energy conservation in Escherichia coli K12. Biochem J. 1975 Dec;152(3):537–546. doi: 10.1042/bj1520537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Reid G. A., Haddock B. A., Ingledew W. J. Assembly of functional b-type cytochromes in membranes from a 5-aminolaevulinic acid-requiring mutant of Escherichia coli. FEBS Lett. 1981 Aug 31;131(2):346–350. doi: 10.1016/0014-5793(81)80400-0. [DOI] [PubMed] [Google Scholar]
  39. Rice C. W., Hempfling W. P. Oxygen-limited continuous culture and respiratory energy conservation in Escherichia coli. J Bacteriol. 1978 Apr;134(1):115–124. doi: 10.1128/jb.134.1.115-124.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. SISTROM W. R. The kinetics of the synthesis of photopigments in Rhodopseudomonas spheroides. J Gen Microbiol. 1962 Sep;28:607–616. doi: 10.1099/00221287-28-4-607. [DOI] [PubMed] [Google Scholar]
  41. Shipp W. S. Cytochromes of Escherichia coli. Arch Biochem Biophys. 1972 Jun;150(2):459–472. doi: 10.1016/0003-9861(72)90063-x. [DOI] [PubMed] [Google Scholar]
  42. Sweet W. J., Peterson J. A. Changes in cytochrome content and electron transport patterns in Pseudomonas putida as a function of growth phase. J Bacteriol. 1978 Jan;133(1):217–224. doi: 10.1128/jb.133.1.217-224.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sweet W. J., Peterson J. A. The respiratory system of Pseudomonas putida: participation of cytochromes in electron transport. Arch Biochem Biophys. 1981 Jun;209(1):256–265. doi: 10.1016/0003-9861(81)90279-4. [DOI] [PubMed] [Google Scholar]
  44. Săsărman A., Surdeanu M., Horodniceanu T. Locus determining the synthesis of delta-aminolevulinic acid in Escherichia coli K-12. J Bacteriol. 1968 Nov;96(5):1882–1884. doi: 10.1128/jb.96.5.1882-1884.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tyree B., Webster D. A. Intermediates in the reaction of reduced cytochrome o (Vitreoscilla) with oxygen. J Biol Chem. 1979 Jan 10;254(1):176–179. [PubMed] [Google Scholar]
  46. Tyree B., Webster D. A. The binding of cyanide and carbon monoxide to cytochrome o purified from Vitreoscilla. Evidence for subunit interaction in the reduced protein. J Biol Chem. 1978 Oct 10;253(19):6988–6991. [PubMed] [Google Scholar]
  47. Watanabe H., Kamita Y., Nakamura T., Takimoto A., Yamanaka T. The terminal oxidase of Photobacterium phosphoreum. A novel cytochrome. Biochim Biophys Acta. 1979 Jul 10;547(1):70–78. doi: 10.1016/0005-2728(79)90096-3. [DOI] [PubMed] [Google Scholar]
  48. Yang T. Y., Jurtshuk P., Jr Purification and characterization of cytochrome O from Azotobacter vinelandii. Biochim Biophys Acta. 1978 Jun 8;502(3):543–548. doi: 10.1016/0005-2728(78)90086-5. [DOI] [PubMed] [Google Scholar]
  49. Yang T. Y., Jurtshuk P., Jr Studies on the red oxidase (cytochrome o) of Azotobacter vinelandii. Biochem Biophys Res Commun. 1978 Apr 14;81(3):1032–1039. doi: 10.1016/0006-291x(78)91454-7. [DOI] [PubMed] [Google Scholar]
  50. Yang T., O'Keefe D., Chance B. The oxidation-reduction potentials of cytochrome o + c4 and cytochrome o purified from Azotobacter vinelandii. Biochem J. 1979 Sep 1;181(3):763–766. doi: 10.1042/bj1810763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yang T. Tetramethyl-p-phenylenediamine oxidase of Pseudomonas aeruginosa. Eur J Biochem. 1982 Jan;121(2):335–341. doi: 10.1111/j.1432-1033.1982.tb05791.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES