Skip to main content
The British Journal of Cancer. Supplement logoLink to The British Journal of Cancer. Supplement
. 1987 Jun;8:113–117.

Production of thymine glycols in DNA by radiation and chemical carcinogens as detected by a monoclonal antibody.

S A Leadon 1
PMCID: PMC2149462  PMID: 3477281

Abstract

In order to understand the role in carcinogenesis of damage indirectly induced by chemical carcinogens, it is important to identify the primary DNA lesions. We have measured the formation and repair of one type of DNA modification, 5,6-dihydroxydihydrothymine (thymine glycol), following exposure of cultured human cells to the carcinogens N-hydroxy-2-naphthylamine or benzo(a)pyrene. The efficiency of production of thymine glycols in DNA by these carcinogens was compared to that by ionizing radiation and ultraviolet light. Thymine glycols were detected using a monoclonal antibody against this product in a sensitive immunoassay. We found that thymine glycols were produced in DNA in a dose dependent manner after exposure to the carcinogens and that their production was reduced if either catalase or superoxide dismutase or both were present at the time of treatment. The efficiency of thymine glycol production following exposure to the chemical carcinogens was greater than that following equi-toxic doses of radiation. Thymine glycols were efficiently removed from the DNA of human cells following treatment with either the chemical carcinogens, ionizing radiation or ultraviolet light.

Full text

PDF
113

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science. 1983 Sep 23;221(4617):1256–1264. doi: 10.1126/science.6351251. [DOI] [PubMed] [Google Scholar]
  2. Beer M., Stern S., Carmalt D., Mohlhenrich K. H. Determination of base sequence in nucleic acids with the electron microscope. V. The thymine-specific reactions of osmium tetroxide with deoxyribonucleic acid and its components. Biochemistry. 1966 Jul;5(7):2283–2288. doi: 10.1021/bi00871a017. [DOI] [PubMed] [Google Scholar]
  3. Bohr V. A., Smith C. A., Okumoto D. S., Hanawalt P. C. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell. 1985 Feb;40(2):359–369. doi: 10.1016/0092-8674(85)90150-3. [DOI] [PubMed] [Google Scholar]
  4. Borek C., Troll W. Modifiers of free radicals inhibit in vitro the oncogenic actions of x-rays, bleomycin, and the tumor promoter 12-O-tetradecanoylphorbol 13-acetate. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1304–1307. doi: 10.1073/pnas.80.5.1304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cerutti P. A. Prooxidant states and tumor promotion. Science. 1985 Jan 25;227(4685):375–381. doi: 10.1126/science.2981433. [DOI] [PubMed] [Google Scholar]
  6. Copeland E. S. A National Institutes of Health Workshop report. Free radicals in promotion--a chemical pathology study section workshop. Cancer Res. 1983 Nov;43(11):5631–5637. [PubMed] [Google Scholar]
  7. Emerit I., Cerutti P. A. Tumor promoter phorbol 12-myristate 13-acetate induces a clastogenic factor in human lymphocytes. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7509–7513. doi: 10.1073/pnas.79.23.7509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frenkel K., Goldstein M. S., Duker N. J., Teebor G. W. Identification of the cis-thymine glycol moiety in oxidized deoxyribonucleic acid. Biochemistry. 1981 Feb 17;20(4):750–754. doi: 10.1021/bi00507a014. [DOI] [PubMed] [Google Scholar]
  9. Frenkel K., Goldstein M. S., Teebor G. W. Identification of the cis-thymine glycol moiety in chemically oxidized and gamma-irradiated deoxyribonucleic acid by high-pressure liquid chromatography analysis. Biochemistry. 1981 Dec 22;20(26):7566–7571. doi: 10.1021/bi00529a035. [DOI] [PubMed] [Google Scholar]
  10. Guerrero I., Villasante A., Corces V., Pellicer A. Activation of a c-K-ras oncogene by somatic mutation in mouse lymphomas induced by gamma radiation. Science. 1984 Sep 14;225(4667):1159–1162. doi: 10.1126/science.6474169. [DOI] [PubMed] [Google Scholar]
  11. Hariharan P. V., Cerutti P. A. Excision of damaged thymine residues from gamma-irradiated poly(dA-dT) by crude extracts of Escherichia coli. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3532–3536. doi: 10.1073/pnas.71.9.3532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hariharan P. V., Cerutti P. A. Formation of products of the 5,6-dihydroxydihydrothymine type by ultraviolet light in HeLa cells. Biochemistry. 1977 Jun 14;16(12):2791–2795. doi: 10.1021/bi00631a032. [DOI] [PubMed] [Google Scholar]
  13. Huberman E., Sachs L. Metabolism of the carcinogenic hydrocarbon benzo(a)pyrene in human fibroblast and epithelial cells. Int J Cancer. 1973 Mar 15;11(2):412–418. doi: 10.1002/ijc.2910110218. [DOI] [PubMed] [Google Scholar]
  14. Kaneko M., Leadon S. A. Production of thymine glycols in DNA by N-hydroxy-2-naphthylamine as detected by a monoclonal antibody. Cancer Res. 1986 Jan;46(1):71–75. [PubMed] [Google Scholar]
  15. Kaneko M., Nakayama T., Kodama M., Nagata C. Detection of DNA lesions in cultured human fibroblasts induced by active oxygen species generated from a hydroxylated metabolite of 2-naphthylamine. Gan. 1984 Apr;75(4):349–354. [PubMed] [Google Scholar]
  16. Leadon S. A., Hanawalt P. C. Monoclonal antibody to DNA containing thymine glycol. Mutat Res. 1983 Aug;112(4):191–200. doi: 10.1016/0167-8817(83)90006-8. [DOI] [PubMed] [Google Scholar]
  17. Leadon S. A., Zolan M. E., Hanawalt P. C. Restricted repair of aflatoxin B1 induced damage in alpha DNA of monkey cells. Nucleic Acids Res. 1983 Aug 25;11(16):5675–5689. doi: 10.1093/nar/11.16.5675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Levin D. E., Hollstein M., Christman M. F., Schwiers E. A., Ames B. N. A new Salmonella tester strain (TA102) with A X T base pairs at the site of mutation detects oxidative mutagens. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7445–7449. doi: 10.1073/pnas.79.23.7445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mattern M. R., Hariharan P. V., Cerutti P. A. Selective excision of gamma ray damaged thymine from the DNA of cultured mammalian cells. Biochim Biophys Acta. 1975 Jun 2;395(1):48–55. doi: 10.1016/0005-2787(75)90232-4. [DOI] [PubMed] [Google Scholar]
  20. McClintock B. The significance of responses of the genome to challenge. Science. 1984 Nov 16;226(4676):792–801. doi: 10.1126/science.15739260. [DOI] [PubMed] [Google Scholar]
  21. Nakayama T., Kimura T., Kodama M., Nagata C. Generation of hydrogen peroxide and superoxide anion from active metabolites of naphthylamines and aminoazo dyes: its possible role in carcinogenesis. Carcinogenesis. 1983;4(6):765–769. doi: 10.1093/carcin/4.6.765. [DOI] [PubMed] [Google Scholar]
  22. Stampfer M. R., Bartholomew J. C., Smith H. S., Bartley J. C. Metabolism of benzo[a]pyrene by human mammary epithelial cells: toxicity and DNA adduct formation. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6251–6255. doi: 10.1073/pnas.78.10.6251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yamane T., Wyluda B. J., Shulman R. G. Dihydrothymine from UV-irradiated DNA. Proc Natl Acad Sci U S A. 1967 Aug;58(2):439–442. doi: 10.1073/pnas.58.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yunis J. J., Soreng A. L. Constitutive fragile sites and cancer. Science. 1984 Dec 7;226(4679):1199–1204. doi: 10.1126/science.6239375. [DOI] [PubMed] [Google Scholar]
  25. Yunis J. J. The chromosomal basis of human neoplasia. Science. 1983 Jul 15;221(4607):227–236. doi: 10.1126/science.6336310. [DOI] [PubMed] [Google Scholar]
  26. Zolan M. E., Cortopassi G. A., Smith C. A., Hanawalt P. C. Deficient repair of chemical adducts in alpha DNA of monkey cells. Cell. 1982 Mar;28(3):613–619. doi: 10.1016/0092-8674(82)90216-1. [DOI] [PubMed] [Google Scholar]

Articles from The British Journal of Cancer. Supplement are provided here courtesy of Cancer Research UK

RESOURCES