Skip to main content
The British Journal of Cancer. Supplement logoLink to The British Journal of Cancer. Supplement
. 1987 Jun;8:96–104.

The role of glutathione in radiation and drug induced cytotoxicity.

J B Mitchell 1, A Russo 1
PMCID: PMC2149463  PMID: 3307879

Abstract

The cellular response to radiation and various chemotherapy drugs, whose mechanism in part includes production of free radicals or DNA damage, may be altered by modification of cellular thiols. The recent introduction of agents which either inhibit glutathione (GSH) biosynthesis (buthionine sulfoximine, BSO) or stimulate GSH synthesis (oxothiazolidine-4-carboxylate, OTZ) has enabled detailed studies assessing the role of GSH in the radiation and chemotherapy response. GSH depletion by BSO has resulted in radiosensitization of both aerobic and hypoxic cells, with some discrepancy among laboratories as to the extent of sensitization of hypoxic cells. GSH elevation (by approximately 200% of control) has resulted in modest protection of aerobic and hypoxic cells. GSH has been shown to play an important role in the radiosensitization of hypoxic cells using nitroimidazoles. The extent of nitroimidazole hypoxic radiosensitization has recently been shown to depend on intracellular GSH levels. Recent findings that some human tumour cell lines, as opposed to rodent cell lines, are high in cellular GSH have prompted a need to evaluate in vivo, GSH levels in human tumours. Possible roles of GSH in the chemotherapy response include: (1) detoxification of H2O2 and/or organoperoxides through GSH peroxidase, (2) non-catalyzed nucleophilic reaction of GSH and drug, (3) binding of the drug with GSH catalyzed by GSH transferase, and (4) activation of certain drugs to toxic species by GSH. The role of GSH as it relates to the various topics mentioned above is discussed with emphasis on direction for future studies.

Full text

PDF
96

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. E., Powrie F., Puri R. N., Meister A. Glutathione monoethyl ester: preparation, uptake by tissues, and conversion to glutathione. Arch Biochem Biophys. 1985 Jun;239(2):538–548. doi: 10.1016/0003-9861(85)90723-4. [DOI] [PubMed] [Google Scholar]
  2. Biaglow J. E., Clark E. P., Epp E. R., Morse-Guadio M., Varnes M. E., Mitchell J. B. Nonprotein thiols and the radiation response of A549 human lung carcinoma cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1983 Nov;44(5):489–495. doi: 10.1080/09553008314551491. [DOI] [PubMed] [Google Scholar]
  3. Brown J. M. Clinical trials of radiosensitizers: what should we expect? Int J Radiat Oncol Biol Phys. 1984 Mar;10(3):425–429. doi: 10.1016/0360-3016(84)90063-4. [DOI] [PubMed] [Google Scholar]
  4. Bump E. A., Yu N. Y., Brown J. M. Radiosensitization of hypoxic tumor cells by depletion of intracellular glutathione. Science. 1982 Aug 6;217(4559):544–545. doi: 10.1126/science.7089580. [DOI] [PubMed] [Google Scholar]
  5. Carmichael J., Adams D. J., Ansell J., Wolf C. R. Glutathione and glutathione transferase levels in mouse granulocytes following cyclophosphamide administration. Cancer Res. 1986 Feb;46(2):735–739. [PubMed] [Google Scholar]
  6. Carmichael J., Friedman N., Tochner Z., Adams D. J., Wolf C. R., Mitchell J. B., Russo A. Inhibition of the protective effect of cyclophosphamide by pre-treatment with buthionine sulfoximine. Int J Radiat Oncol Biol Phys. 1986 Jul;12(7):1191–1193. doi: 10.1016/0360-3016(86)90256-7. [DOI] [PubMed] [Google Scholar]
  7. Clark E. P., Epp E. R., Morse-Gaudio M., Biaglow J. E. The role of glutathione in the aerobic radioresponse. I. Sensitization and recovery in the absence of intracellular glutathione. Radiat Res. 1986 Dec;108(3):238–250. [PubMed] [Google Scholar]
  8. DeGraff W. G., Russo A., Mitchell J. B. Glutathione depletion greatly reduces neocarzinostatin cytotoxicity in Chinese hamster V79 cells. J Biol Chem. 1985 Jul 15;260(14):8312–8315. [PubMed] [Google Scholar]
  9. Dethmers J. K., Meister A. Glutathione export by human lymphoid cells: depletion of glutathione by inhibition of its synthesis decreases export and increases sensitivity to irradiation. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7492–7496. doi: 10.1073/pnas.78.12.7492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Green J. A., Vistica D. T., Young R. C., Hamilton T. C., Rogan A. M., Ozols R. F. Potentiation of melphalan cytotoxicity in human ovarian cancer cell lines by glutathione depletion. Cancer Res. 1984 Nov;44(11):5427–5431. [PubMed] [Google Scholar]
  11. HOWARD-FLANDERS P. Effect of oxygen on the radiosensitivity of bacteriophage in the presence of sulphydryl compounds. Nature. 1960 May 7;186:485–487. doi: 10.1038/186485a0. [DOI] [PubMed] [Google Scholar]
  12. Koch C. J., Stobbe C. C., Baer K. A. Combined radiation-protective and radiation-sensitizing agents. III: Radiosensitization by misonidazole as a function of concentrations of endogenous glutathione or exogenous thiols. Int J Radiat Oncol Biol Phys. 1986 Jul;12(7):1151–1155. doi: 10.1016/0360-3016(86)90247-6. [DOI] [PubMed] [Google Scholar]
  13. Mitchell J. B., Phillips T. L., DeGraff W., Carmichael J., Rajpal R. K., Russo A. The relationship of SR-2508 sensitizer enhancement ratio to cellular glutathione levels in human tumor cell lines. Int J Radiat Oncol Biol Phys. 1986 Jul;12(7):1143–1146. doi: 10.1016/0360-3016(86)90245-2. [DOI] [PubMed] [Google Scholar]
  14. Mitchell J. B., Russo A., Biaglow J. E., McPherson S. Cellular glutathione depletion by diethyl maleate or buthionine sulfoximine: no effect of glutathione depletion on the oxygen enhancement ratio. Radiat Res. 1983 Nov;96(2):422–428. [PubMed] [Google Scholar]
  15. Modig H. G., Edgren M., Révész L. Release of thiols from cellular mixed disulphides and its possible role in radiation protection. Int J Radiat Biol Relat Stud Phys Chem Med. 1972 Sep;22(3):257–268. doi: 10.1080/09553007214551031. [DOI] [PubMed] [Google Scholar]
  16. Mohan R., Podmaniczky K. C., Caley R., Lapidus A., Laughlin J. S. A computerized record and verify system for radiation treatments. Int J Radiat Oncol Biol Phys. 1984 Oct;10(10):1975–1985. doi: 10.1016/0360-3016(84)90281-5. [DOI] [PubMed] [Google Scholar]
  17. Phillips T. L., Mitchell J. B., de Graff W., Russo A., Glatstein E. Variation in sensitizing efficiency for SR 2508 in human cells dependent on glutathione content. Int J Radiat Oncol Biol Phys. 1986 Sep;12(9):1627–1635. doi: 10.1016/0360-3016(86)90289-0. [DOI] [PubMed] [Google Scholar]
  18. Phillips T. L., Wasserman T. H. Promise of radiosensitizers and radioprotectors in the treatment of human cancer. Cancer Treat Rep. 1984 Jan;68(1):291–302. [PubMed] [Google Scholar]
  19. Roizin-Towle L. Selective enhancement of hypoxic cell killing by melphalan via thiol depletion: in vitro studies with hypoxic cell sensitizers and buthionine sulfoximine. J Natl Cancer Inst. 1985 Jan;74(1):151–157. [PubMed] [Google Scholar]
  20. Russo A., Carmichael J., Friedman N., DeGraff W., Tochner Z., Glatstein E., Mitchell J. B. The roles of intracellular glutathione in antineoplastic chemotherapy. Int J Radiat Oncol Biol Phys. 1986 Aug;12(8):1347–1354. doi: 10.1016/0360-3016(86)90169-0. [DOI] [PubMed] [Google Scholar]
  21. Russo A., DeGraff W., Friedman N., Mitchell J. B. Selective modulation of glutathione levels in human normal versus tumor cells and subsequent differential response to chemotherapy drugs. Cancer Res. 1986 Jun;46(6):2845–2848. [PubMed] [Google Scholar]
  22. Russo A., Mitchell J. B., Finkelstein E., DeGraff W. G., Spiro I. J., Gamson J. The effects of cellular glutathione elevation on the oxygen enhancement ratio. Radiat Res. 1985 Aug;103(2):232–239. [PubMed] [Google Scholar]
  23. Russo A., Mitchell J. B. Potentiation and protection of doxorubicin cytotoxicity by cellular glutathione modulation. Cancer Treat Rep. 1985 Nov;69(11):1293–1296. [PubMed] [Google Scholar]
  24. Russo A., Mitchell J. B. Radiation response of Chinese hamster cells after elevation of intracellular glutathione levels. Int J Radiat Oncol Biol Phys. 1984 Aug;10(8):1243–1247. doi: 10.1016/0360-3016(84)90326-2. [DOI] [PubMed] [Google Scholar]
  25. Siemann D. W., Mulcahy R. T. Sensitization of cancer chemotherapeutic agents by nitroheterocyclics. Biochem Pharmacol. 1986 Jan 1;35(1):111–115. doi: 10.1016/0006-2952(86)90567-8. [DOI] [PubMed] [Google Scholar]
  26. Sies H., Brigelius R., Wefers H., Müller A., Cadenas E. Cellular redox changes and response to drugs and toxic agents. Fundam Appl Toxicol. 1983 Jul-Aug;3(4):200–208. doi: 10.1016/s0272-0590(83)80126-2. [DOI] [PubMed] [Google Scholar]
  27. Solaiman D., Rao E. A., Petering D. H., Sealy R. C., Antholine W. E. Chemical, biochemical, and cellular properties of copper and iron bleomycins. Int J Radiat Oncol Biol Phys. 1979 Sep;5(9):1519–1521. doi: 10.1016/0360-3016(79)90762-4. [DOI] [PubMed] [Google Scholar]
  28. Taylor Y. C., Evans J. W., Brown J. M. Mechanism of sensitization of Chinese hamster ovary cells to melphalan by hypoxic treatment with misonidazole. Cancer Res. 1983 Jul;43(7):3175–3181. [PubMed] [Google Scholar]
  29. Varghese A. J., Whitmore G. F. Misonidazole-glutathione conjugates in CHO cells. Int J Radiat Oncol Biol Phys. 1984 Aug;10(8):1341–1345. doi: 10.1016/0360-3016(84)90345-6. [DOI] [PubMed] [Google Scholar]
  30. Williamson J. M., Boettcher B., Meister A. Intracellular cysteine delivery system that protects against toxicity by promoting glutathione synthesis. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6246–6249. doi: 10.1073/pnas.79.20.6246. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The British Journal of Cancer. Supplement are provided here courtesy of Cancer Research UK

RESOURCES