Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1998 Mar;77(5):753–759. doi: 10.1038/bjc.1998.123

Cytotoxicity of alpha-particle-emitting astatine-211-labelled antibody in tumour spheroids: no effect of hyperthermia.

M L Hauck 1, R H Larsen 1, P C Welsh 1, M R Zalutsky 1
PMCID: PMC2149964  PMID: 9514054

Abstract

The high linear energy transfer, alpha-particle-emitting radionuclide astatine-211 (211At) is of interest for certain therapeutic applications; however, because of the 55- to 70-microm path length of its alpha-particles, achieving homogeneous tracer distribution is critical. Hyperthermia may enhance the therapeutic efficacy of alpha-particle endoradiotherapy if it can improve tracer distribution. In this study, we have investigated whether hyperthermia increased the cytotoxicity of an 211At-labelled monoclonal antibody (MAb) in tumour spheroids with a radius (approximately 100 microm) greater than the range of 211At alpha-particles. Hyperthermia for 1 h at 42 degrees C was used because this treatment itself resulted in no regrowth delay. Radiolabelled chimeric MAb 81C6 reactive with the extracellular matrix antigen tenascin was added to spheroids grown from the D-247 MG human glioma cell line at activity concentrations ranging from 0.125 to 250 kBq ml(-1). A significant regrowth delay was observed at 125 and 250 kBq ml(-1) in both hyperthermia-treated and untreated spheroids. For groups receiving hyperthermia, no increase in cytotoxicity was seen compared with normothermic controls at any activity concentration. These results and those from autoradiographs indicate that hyperthermia at 42 degrees C for 1 h had no significant effect on the uptake or distribution of this antitenascin MAb in D-247 MG spheroids.

Full text

PDF
753

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armour E. P., Wang Z. H., Corry P. M., Martinez A. Sensitization of rat 9L gliosarcoma cells to low dose rate irradiation by long duration 41 degrees C hyperthermia. Cancer Res. 1991 Jun 15;51(12):3088–3095. [PubMed] [Google Scholar]
  2. Baxter L. T., Jain R. K. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc Res. 1989 Jan;37(1):77–104. doi: 10.1016/0026-2862(89)90074-5. [DOI] [PubMed] [Google Scholar]
  3. Bigner D. D., Brown M., Coleman R. E., Friedman A. H., Friedman H. S., McLendon R. E., Bigner S. H., Zhao X. G., Wikstrand C. J., Pegram C. N. Phase I studies of treatment of malignant gliomas and neoplastic meningitis with 131I-radiolabeled monoclonal antibodies anti-tenascin 81C6 and anti-chondroitin proteoglycan sulfate Me1-14 F (ab')2--a preliminary report. J Neurooncol. 1995;24(1):109–122. doi: 10.1007/BF01052668. [DOI] [PubMed] [Google Scholar]
  4. Bigner S. H., Mark J., Burger P. C., Mahaley M. S., Jr, Bullard D. E., Muhlbaier L. H., Bigner D. D. Specific chromosomal abnormalities in malignant human gliomas. Cancer Res. 1988 Jan 15;48(2):405–411. [PubMed] [Google Scholar]
  5. Cheng F. M., Hansen E. B., Taylor C. R., Epstein A. L. Diffusion and binding of monoclonal antibody TNT-1 in multicellular tumor spheroids. J Natl Cancer Inst. 1991 Feb 6;83(3):200–204. doi: 10.1093/jnci/83.3.200. [DOI] [PubMed] [Google Scholar]
  6. Cope D. A., Dewhirst M. W., Friedman H. S., Bigner D. D., Zalutsky M. R. Enhanced delivery of a monoclonal antibody F(ab')2 fragment to subcutaneous human glioma xenografts using local hyperthermia. Cancer Res. 1990 Mar 15;50(6):1803–1809. [PubMed] [Google Scholar]
  7. Dangl J. L., Wensel T. G., Morrison S. L., Stryer L., Herzenberg L. A., Oi V. T. Segmental flexibility and complement fixation of genetically engineered chimeric human, rabbit and mouse antibodies. EMBO J. 1988 Jul;7(7):1989–1994. doi: 10.1002/j.1460-2075.1988.tb03037.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davies C. D., Lindmo T. Hyperthermia-induced shedding and masking of melanoma-associated antigen. Int J Hyperthermia. 1990 Nov-Dec;6(6):1053–1064. doi: 10.3109/02656739009140988. [DOI] [PubMed] [Google Scholar]
  9. Essand M., Grönvik C., Hartman T., Carlsson J. Radioimmunotherapy of prostatic adenocarcinomas: effects of 131I-labelled E4 antibodies on cells at different depth in DU 145 spheroids. Int J Cancer. 1995 Nov 3;63(3):387–394. doi: 10.1002/ijc.2910630315. [DOI] [PubMed] [Google Scholar]
  10. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  11. Gaze M. N., Mairs R. J., Boyack S. M., Wheldon T. E., Barrett A. 131I-meta-iodobenzylguanidine therapy in neuroblastoma spheroids of different sizes. Br J Cancer. 1992 Dec;66(6):1048–1052. doi: 10.1038/bjc.1992.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gerner E. W., Leith J. T. Enteraction of hyperthermia with radiations of different linerar energy transfer. Int J Radiat Biol Relat Stud Phys Chem Med. 1977 Mar;31(3):283–288. doi: 10.1080/09553007714550331. [DOI] [PubMed] [Google Scholar]
  13. Gridley D. S., Ewart K. L., Cao J. D., Stickney D. R. Hyperthermia enhances localization of 111In-labeled hapten to bifunctional antibody in human colon tumor xenografts. Cancer Res. 1991 Mar 1;51(5):1515–1520. [PubMed] [Google Scholar]
  14. Hauck M. L., Dewhirst M. W., Bigner D. D., Zalutsky M. R. Local hyperthermia improves uptake of a chimeric monoclonal antibody in a subcutaneous xenograft model. Clin Cancer Res. 1997 Jan;3(1):63–70. [PubMed] [Google Scholar]
  15. Hauck M. L., Dewhirst M. W., Zalutsky M. R. The effects of clinically relevant hyperthermic temperatures on the kinetic binding parameters of a monoclonal antibody. Nucl Med Biol. 1996 May;23(4):551–557. doi: 10.1016/0969-8051(96)00039-x. [DOI] [PubMed] [Google Scholar]
  16. He X., Archer G. E., Wikstrand C. J., Morrison S. L., Zalutsky M. R., Bigner D. D., Batra S. K. Generation and characterization of a mouse/human chimeric antibody directed against extracellular matrix protein tenascin. J Neuroimmunol. 1994 Jul;52(2):127–137. doi: 10.1016/0165-5728(94)90106-6. [DOI] [PubMed] [Google Scholar]
  17. Hjelstuen M. H., Rasch-Halvorsen K., Brekken C., Bruland O., de L Davies C. Penetration and binding of monoclonal antibody in human osteosarcoma multicell spheroids. Comparison of confocal laser scanning microscopy and autoradiography. Acta Oncol. 1996;35(3):273–279. doi: 10.3109/02841869609101641. [DOI] [PubMed] [Google Scholar]
  18. Humm J. L., Cobb L. M. Nonuniformity of tumor dose in radioimmunotherapy. J Nucl Med. 1990 Jan;31(1):75–83. [PubMed] [Google Scholar]
  19. Langmuir V. K., Atcher R. W., Hines J. J., Brechbiel M. W. Iodine-125-NRLU-10 kinetic studies and bismuth-212-NRLU-10 toxicity in LS174T multicell spheroids. J Nucl Med. 1990 Sep;31(9):1527–1533. [PubMed] [Google Scholar]
  20. Langmuir V. K., Mendonca H. L., Woo D. V. Comparisons between two monoclonal antibodies that bind to the same antigen but have differing affinities: uptake kinetics and 125I-antibody therapy efficacy in multicell spheroids. Cancer Res. 1992 Sep 1;52(17):4728–4734. [PubMed] [Google Scholar]
  21. Larsen R. H., Wieland B. W., Zalutsky M. R. Evaluation of an internal cyclotron target for the production of 211At via the 209Bi (alpha,2n)211 at reaction. Appl Radiat Isot. 1996 Feb;47(2):135–143. doi: 10.1016/0969-8043(95)00285-5. [DOI] [PubMed] [Google Scholar]
  22. Mairs R. J., Angerson W., Gaze M. N., Murray T., Babich J. W., Reid R., McSharry C. The distribution of alternative agents for targeted radiotherapy within human neuroblastoma spheroids. Br J Cancer. 1991 Mar;63(3):404–409. doi: 10.1038/bjc.1991.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McFadden R., Kwok C. S. Mathematical model of simultaneous diffusion and binding of antitumor antibodies in multicellular human tumor spheroids. Cancer Res. 1988 Jul 15;48(14):4032–4037. [PubMed] [Google Scholar]
  24. Stickney D. R., Gridley D. S., Kirk G. A., Slater J. M. Enhancement of monoclonal antibody binding to melanoma with single dose radiation or hyperthermia. NCI Monogr. 1987;(3):47–52. [PubMed] [Google Scholar]
  25. Walker K. A., Murray T., Hilditch T. E., Wheldon T. E., Gregor A., Hann I. M. A tumour spheroid model for antibody-targeted therapy of micrometastases. Br J Cancer. 1988 Jul;58(1):13–16. doi: 10.1038/bjc.1988.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wang Z., Armour E. P., Corry P. M., Martinez A. Elimination of dose-rate effects by mild hyperthermia. Int J Radiat Oncol Biol Phys. 1992;24(5):965–973. doi: 10.1016/0360-3016(92)90481-v. [DOI] [PubMed] [Google Scholar]
  27. Wartenberg M., Acker H. Quantitative recording of vitality patterns in living multicellular spheroids by confocal microscopy. Micron. 1995;26(5):395–404. doi: 10.1016/0968-4328(95)00009-7. [DOI] [PubMed] [Google Scholar]
  28. Wong J. Y., Mivechi N. F., Paxton R. J., Williams L. E., Beatty B. G., Beatty J. D., Shively J. E. The effects of hyperthermia on tumor carcinoembryonic antigen expression. Int J Radiat Oncol Biol Phys. 1989 Oct;17(4):803–808. doi: 10.1016/0360-3016(89)90070-9. [DOI] [PubMed] [Google Scholar]
  29. Zalutsky M. R., McLendon R. E., Garg P. K., Archer G. E., Schuster J. M., Bigner D. D. Radioimmunotherapy of neoplastic meningitis in rats using an alpha-particle-emitting immunoconjugate. Cancer Res. 1994 Sep 1;54(17):4719–4725. [PubMed] [Google Scholar]
  30. el-Kareh A. W., Braunstein S. L., Secomb T. W. Effect of cell arrangement and interstitial volume fraction on the diffusivity of monoclonal antibodies in tissue. Biophys J. 1993 May;64(5):1638–1646. doi: 10.1016/S0006-3495(93)81532-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. van Osdol W., Fujimori K., Weinstein J. N. An analysis of monoclonal antibody distribution in microscopic tumor nodules: consequences of a "binding site barrier". Cancer Res. 1991 Sep 15;51(18):4776–4784. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES