Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1998 May;77(10):1621–1627. doi: 10.1038/bjc.1998.265

The influence of hypoxia and pH on aminolaevulinic acid-induced photodynamic therapy in bladder cancer cells in vitro.

L Wyld 1, M W Reed 1, N J Brown 1
PMCID: PMC2150064  PMID: 9635837

Abstract

Photodynamic therapy (PDT) is a cancer treatment based on the interaction of light and a photosensitizing chemical. The photosensitizer protoporphyrin IX (PpIX) is generated via the haem biosynthetic pathway after administration of aminolaevulinic acid (ALA). The cellular microenvironment of tumours is hypoxic and acidotic relative to normal tissue, which may influence PpIX generation and compromise PDT efficacy. This study used bladder cancer cells, incubated with ALA at various oxygen tensions and H+ ion concentrations, and assessed the effects on PpIX generation and PDT sensitivity. PpIX production was reduced at 0%, 2.5% (19 mmHg) and 5% (38 mmHg) oxygen compared with that at 21% (160 mmHg) oxygen (0.15, 0.28 and 0.398 ng microg(-1) protein compared with 0.68 ng microg(-1) respectively; P < 0.05). The response to PDT was abolished by hypoxia, as a result of both reduced PpIX synthesis and reduced PDT toxicity. PpIX production was greater at pH 7.0 and 6.5 (0.75 and 0.66 ng microg(-1)) compared with that at pH 7.4 and 5.5 (0.41 and 0.55 ng microg(-1) respectively). PDT cytotoxicity was enhanced at lower pH values. These results suggest that ALA-induced PDT may be inhibited by hypoxia due to reduced intrinsic PpIX synthesis. Acidosis may slightly enhance the efficacy of ALA-induced PDT.

Full text

PDF
1621

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amellem O., Pettersen E. O. Cell inactivation and cell cycle inhibition as induced by extreme hypoxia: the possible role of cell cycle arrest as a protection against hypoxia-induced lethal damage. Cell Prolif. 1991 Mar;24(2):127–141. doi: 10.1111/j.1365-2184.1991.tb01144.x. [DOI] [PubMed] [Google Scholar]
  2. Baas P., Oppelaar H., Stavenuiter M., van Zandwijk N., Stewart F. A. Interaction of the bioreductive drug SR 4233 and photodynamic therapy using photofrin in a mouse tumor model. Int J Radiat Oncol Biol Phys. 1993 Oct 20;27(3):665–670. doi: 10.1016/0360-3016(93)90394-b. [DOI] [PubMed] [Google Scholar]
  3. Baas P., van Geel I. P., Oppelaar H., Meyer M., Beynen J. H., van Zandwijk N., Stewart F. A. Enhancement of photodynamic therapy by mitomycin C: a preclinical and clinical study. Br J Cancer. 1996 Apr;73(8):945–951. doi: 10.1038/bjc.1996.186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bech O., Berg K., Moan J. The pH dependency of protoporphyrin IX formation in cells incubated with 5-aminolevulinic acid. Cancer Lett. 1997 Feb 26;113(1-2):25–29. doi: 10.1016/s0304-3835(96)04558-2. [DOI] [PubMed] [Google Scholar]
  5. Bermúdez Moretti M., Correa García S., Stella C., Ramos E., Batlle A. M. Delta-aminolevulinic acid transport in Saccharomyces cerevisiae. Int J Biochem. 1993 Dec;25(12):1917–1924. doi: 10.1016/0020-711x(88)90325-4. [DOI] [PubMed] [Google Scholar]
  6. Cairnduff F., Stringer M. R., Hudson E. J., Ash D. V., Brown S. B. Superficial photodynamic therapy with topical 5-aminolaevulinic acid for superficial primary and secondary skin cancer. Br J Cancer. 1994 Mar;69(3):605–608. doi: 10.1038/bjc.1994.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chapman J. D., Sturrock J., Boag J. W., Crookall J. O. Factors affecting the oxygen tension around cells growing in plastic Petri dishes. Int J Radiat Biol Relat Stud Phys Chem Med. 1970;17(4):305–328. doi: 10.1080/09553007014550381. [DOI] [PubMed] [Google Scholar]
  8. FALK J. E., PORRA R. J., BROWN A., MOSS F., LARMINIE H. E. Effect of oxygen tension on haem and porphyrin biosynthesis. Nature. 1959 Oct 17;184:1217–1219. doi: 10.1038/1841217a0. [DOI] [PubMed] [Google Scholar]
  9. Fingar V. H., Mang T. S., Henderson B. W. Modification of photodynamic therapy-induced hypoxia by fluosol-DA (20%) and carbogen breathing in mice. Cancer Res. 1988 Jun 15;48(12):3350–3354. [PubMed] [Google Scholar]
  10. Foster T. H., Murant R. S., Bryant R. G., Knox R. S., Gibson S. L., Hilf R. Oxygen consumption and diffusion effects in photodynamic therapy. Radiat Res. 1991 Jun;126(3):296–303. doi: 10.2307/3577919. [DOI] [PubMed] [Google Scholar]
  11. HEWITT H. B., WILSON C. W. The effect of tissue oxygen tension on the radiosensitivity of leukaemia cells irradiated in situ in the livers of leukaemic mice. Br J Cancer. 1959 Dec;13:675–684. doi: 10.1038/bjc.1959.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Henderson B. W., Miller A. C. Effects of scavengers of reactive oxygen and radical species on cell survival following photodynamic treatment in vitro: comparison to ionizing radiation. Radiat Res. 1986 Nov;108(2):196–205. [PubMed] [Google Scholar]
  13. Hirsch B. D., Walz N. C., Meeker B. E., Arnfield M. R., Tulip J., McPhee M. S., Chapman J. D. Photodynamic therapy-induced hypoxia in rat tumors and normal tissues. Photochem Photobiol. 1987 Nov;46(5):847–852. doi: 10.1111/j.1751-1097.1987.tb04858.x. [DOI] [PubMed] [Google Scholar]
  14. Kriegmair M., Baumgartner R., Lumper W., Waidelich R., Hofstetter A. Early clinical experience with 5-aminolevulinic acid for the photodynamic therapy of superficial bladder cancer. Br J Urol. 1996 May;77(5):667–671. doi: 10.1046/j.1464-410x.1996.09717.x. [DOI] [PubMed] [Google Scholar]
  15. Krtolica A., Ludlow J. W. Hypoxia arrests ovarian carcinoma cell cycle progression, but invasion is unaffected. Cancer Res. 1996 Mar 1;56(5):1168–1173. [PubMed] [Google Scholar]
  16. Loh C. S., MacRobert A. J., Bedwell J., Regula J., Krasner N., Bown S. G. Oral versus intravenous administration of 5-aminolaevulinic acid for photodynamic therapy. Br J Cancer. 1993 Jul;68(1):41–51. doi: 10.1038/bjc.1993.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mitchell J. B., McPherson S., DeGraff W., Gamson J., Zabell A., Russo A. Oxygen dependence of hematoporphyrin derivative-induced photoinactivation of Chinese hamster cells. Cancer Res. 1985 May;45(5):2008–2011. [PubMed] [Google Scholar]
  18. Moan J., Sommer S. Oxygen dependence of the photosensitizing effect of hematoporphyrin derivative in NHIK 3025 cells. Cancer Res. 1985 Apr;45(4):1608–1610. [PubMed] [Google Scholar]
  19. Musgrove E., Seaman M., Hedley D. Relationship between cytoplasmic pH and proliferation during exponential growth and cellular quiescence. Exp Cell Res. 1987 Sep;172(1):65–75. doi: 10.1016/0014-4827(87)90093-0. [DOI] [PubMed] [Google Scholar]
  20. Poulson R., Polglase W. J. The enzymic conversion of protoporphyrinogen IX to protoporphyrin IX. Protoporphyrinogen oxidase activity in mitochondrial extracts of Saccharomyces cerevisiae. J Biol Chem. 1975 Feb 25;250(4):1269–1274. [PubMed] [Google Scholar]
  21. Rasheed S., Gardner M. B., Rongey R. W., Nelson-Rees W. A., Arnstein P. Human bladder carcinoma: characterization of two new tumor cell lines and search for tumor viruses. J Natl Cancer Inst. 1977 Apr;58(4):881–890. doi: 10.1093/jnci/58.4.881. [DOI] [PubMed] [Google Scholar]
  22. Reed M. W., Mullins A. P., Anderson G. L., Miller F. N., Wieman T. J. The effect of photodynamic therapy on tumor oxygenation. Surgery. 1989 Jul;106(1):94–99. [PubMed] [Google Scholar]
  23. Romeo G., Levin E. Y. Uroporphyrinogen decarboxylase from mouse spleen. Biochim Biophys Acta. 1971 Feb 23;230(2):330–341. doi: 10.1016/0304-4165(71)90220-0. [DOI] [PubMed] [Google Scholar]
  24. SANO S., GRANICK S. Mitochondrial coproporphyrinogen oxidase and protoporphyrin formation. J Biol Chem. 1961 Apr;236:1173–1180. [PubMed] [Google Scholar]
  25. Schick E., Kaufmann R., Rück A., Hainzl A., Boehncke W. H. Influence of activation and differentiation of cells on the effectiveness of photodynamic therapy. Acta Derm Venereol. 1995 Jul;75(4):276–279. doi: 10.2340/0001555575276279. [DOI] [PubMed] [Google Scholar]
  26. Star W. M., Marijnissen H. P., van den Berg-Blok A. E., Versteeg J. A., Franken K. A., Reinhold H. S. Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers. Cancer Res. 1986 May;46(5):2532–2540. [PubMed] [Google Scholar]
  27. Stratford I. J., Stephens M. A. The differential hypoxic cytotoxicity of bioreductive agents determined in vitro by the MTT assay. Int J Radiat Oncol Biol Phys. 1989 Apr;16(4):973–976. doi: 10.1016/0360-3016(89)90898-5. [DOI] [PubMed] [Google Scholar]
  28. Vaupel P., Kallinowski F., Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989 Dec 1;49(23):6449–6465. [PubMed] [Google Scholar]
  29. Weishaupt K. R., Gomer C. J., Dougherty T. J. Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res. 1976 Jul;36(7 Pt 1):2326–2329. [PubMed] [Google Scholar]
  30. Wyld L., Burn J. L., Reed M. W., Brown N. J. Factors affecting aminolaevulinic acid-induced generation of protoporphyrin IX. Br J Cancer. 1997;76(6):705–712. doi: 10.1038/bjc.1997.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. del Batlle A. M., Benson A., Rimington C. Purification and properties of coproporphyrinogenase. Biochem J. 1965 Dec;97(3):731–740. doi: 10.1042/bj0970731. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES