Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1998 Apr;77(7):1108–1114. doi: 10.1038/bjc.1998.184

The ratio of initial/residual DNA damage predicts intrinsic radiosensitivity in seven cervix carcinoma cell lines.

B Marples 1, D Longhurst 1, A M Eastham 1, C M West 1
PMCID: PMC2150146  PMID: 9569047

Abstract

The single-cell gel electrophoresis (comet) assay was used to measure radiation-produced DNA double-strand breaks (dsbs) in a series of seven cervical tumour cell lines (ME180, HT3, C33A, C41, SiHa, MS751 and CaSki). The proportion of DNA dsbs was measured immediately after radiation treatment (initial damage) and 16 h later after incubation at 37 degrees C (residual damage). Linear dose-response curves were seen for initial (slopes 0.23-0.66) and residual (slopes 0.16-0.87) DNA dsbs. Neither of the slopes of the linear regression analysis on the initial and on the residual DNA dsbs dose-response curves (range 0-80 Gy) correlated with SF2 (surviving fraction at 2 Gy) measured after high- (HDR) or low-dose-rate (LDR) irradiation. An association was evident between SF2 after HDR and LDR irradiation and the ratio of the absolute level of initial and residual damage after a single dose of 60 Gy. However, a significant correlation was found between HDR (r= -0.78, P = 0.04) and LDR (r = -0.86, P = 0.03) SF2 values and the ratio of the slopes of the initial and residual DNA dsbs dose-response curves (range 0.47-0.99), representing the fraction of DNA damage remaining. These results indicate that the neutral comet assay can be used to predict radiosensitivity of cervical tumour cell lines by assessing the ratio of initial and residual DNA dsbs.

Full text

PDF
1108

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashby J., Tinwell H., Lefevre P. A., Browne M. A. The single cell gel electrophoresis assay for induced DNA damage (comet assay): measurement of tail length and moment. Mutagenesis. 1995 Mar;10(2):85–90. doi: 10.1093/mutage/10.2.85. [DOI] [PubMed] [Google Scholar]
  2. Cassoni A. M., McMillan T. J., Peacock J. H., Steel G. G. Differences in the level of DNA double-strand breaks in human tumour cell lines following low dose-rate irradiation. Eur J Cancer. 1992;28A(10):1610–1614. doi: 10.1016/0959-8049(92)90052-4. [DOI] [PubMed] [Google Scholar]
  3. Fairbairn D. W., Olive P. L., O'Neill K. L. The comet assay: a comprehensive review. Mutat Res. 1995 Feb;339(1):37–59. doi: 10.1016/0165-1110(94)00013-3. [DOI] [PubMed] [Google Scholar]
  4. Giaccia A. J., Schwartz J., Shieh J., Brown J. M. The use of asymmetric-field inversion gel electrophoresis to predict tumor cell radiosensitivity. Radiother Oncol. 1992 Aug;24(4):231–238. doi: 10.1016/0167-8140(92)90229-n. [DOI] [PubMed] [Google Scholar]
  5. Kelland L. R., Edwards S. M., Steel G. G. Induction and rejoining of DNA double-strand breaks in human cervix carcinoma cell lines of differing radiosensitivity. Radiat Res. 1988 Dec;116(3):526–538. [PubMed] [Google Scholar]
  6. Kiltie A. E., Orton C. J., Ryan A. J., Roberts S. A., Marples B., Davidson S. E., Hunter R. D., Margison G. P., West C. M., Hendry J. H. A correlation between residual DNA double-strand breaks and clonogenic measurements of radiosensitivity in fibroblasts from preradiotherapy cervix cancer patients. Int J Radiat Oncol Biol Phys. 1997 Dec 1;39(5):1137–1144. doi: 10.1016/s0360-3016(97)00545-2. [DOI] [PubMed] [Google Scholar]
  7. Marples B., Joiner M. C. The response of Chinese hamster V79 cells to low radiation doses: evidence of enhanced sensitivity of the whole cell population. Radiat Res. 1993 Jan;133(1):41–51. [PubMed] [Google Scholar]
  8. McKay M. J., Kefford R. F. The spectrum of in vitro radiosensitivity in four human melanoma cell lines is not accounted for by differential induction or rejoining of DNA double strand breaks. Int J Radiat Oncol Biol Phys. 1995 Jan 15;31(2):345–352. doi: 10.1016/0360-3016(94)e0147-c. [DOI] [PubMed] [Google Scholar]
  9. McMillan T. J., Cassoni A. M., Edwards S., Holmes A., Peacock J. H. The relationship of DNA double-strand break induction to radiosensitivity in human tumour cell lines. Int J Radiat Biol. 1990 Sep;58(3):427–438. doi: 10.1080/09553009014551781. [DOI] [PubMed] [Google Scholar]
  10. Núez M. I., McMillan T. J., Valenzuela M. T., Ruiz de Almodóvar J. M., Pedraza V. Relationship between DNA damage, rejoining and cell killing by radiation in mammalian cells. Radiother Oncol. 1996 May;39(2):155–165. doi: 10.1016/0167-8140(96)01732-x. [DOI] [PubMed] [Google Scholar]
  11. Oleinick N. L., Chiu S. M., Friedman L. R. Gamma radiation as a probe of chromatin structure: damage to and repair of active chromatin in the metaphase chromosome. Radiat Res. 1984 Jun;98(3):629–641. [PubMed] [Google Scholar]
  12. Olive P. L., Banáth J. P. Induction and rejoining of radiation-induced DNA single-strand breaks: "tail moment" as a function of position in the cell cycle. Mutat Res. 1993 Oct;294(3):275–283. doi: 10.1016/0921-8777(93)90010-e. [DOI] [PubMed] [Google Scholar]
  13. Olive P. L., Banáth J. P., MacPhail H. S. Lack of a correlation between radiosensitivity and DNA double-strand break induction or rejoining in six human tumor cell lines. Cancer Res. 1994 Jul 15;54(14):3939–3946. [PubMed] [Google Scholar]
  14. Olive P. L., Wlodek D., Banáth J. P. DNA double-strand breaks measured in individual cells subjected to gel electrophoresis. Cancer Res. 1991 Sep 1;51(17):4671–4676. [PubMed] [Google Scholar]
  15. Olive P. L., Wlodek D., Durand R. E., Banáth J. P. Factors influencing DNA migration from individual cells subjected to gel electrophoresis. Exp Cell Res. 1992 Feb;198(2):259–267. doi: 10.1016/0014-4827(92)90378-l. [DOI] [PubMed] [Google Scholar]
  16. Peacock J. H., Eady J. J., Edwards S., Holmes A., McMillan T. J., Steel G. G. Initial damage or repair as the major determinant of cellular radiosensitivity? Int J Radiat Biol. 1989 Nov;56(5):543–547. doi: 10.1080/09553008914551711. [DOI] [PubMed] [Google Scholar]
  17. Powell S. N., McMillan T. J. The repair fidelity of restriction enzyme-induced double strand breaks in plasmid DNA correlates with radioresistance in human tumor cell lines. Int J Radiat Oncol Biol Phys. 1994 Jul 30;29(5):1035–1040. doi: 10.1016/0360-3016(94)90399-9. [DOI] [PubMed] [Google Scholar]
  18. Powell S. N., Whitaker S. J., Edwards S. M., McMillan T. J. A DNA repair defect in a radiation-sensitive clone of a human bladder carcinoma cell line. Br J Cancer. 1992 Jun;65(6):798–802. doi: 10.1038/bjc.1992.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ruiz de Almodóvar J. M., Núez M. I., McMillan T. J., Olea N., Mort C., Villalobos M., Pedraza V., Steel G. G. Initial radiation-induced DNA damage in human tumour cell lines: a correlation with intrinsic cellular radiosensitivity. Br J Cancer. 1994 Mar;69(3):457–462. doi: 10.1038/bjc.1994.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schwartz J. L., Rotmensch J., Giovanazzi S., Cohen M. B., Weichselbaum R. R. Faster repair of DNA double-strand breaks in radioresistant human tumor cells. Int J Radiat Oncol Biol Phys. 1988 Oct;15(4):907–912. doi: 10.1016/0360-3016(88)90125-3. [DOI] [PubMed] [Google Scholar]
  21. Smeets M. F., Mooren E. H., Begg A. C. Radiation-induced DNA damage and repair in radiosensitive and radioresistant human tumour cells measured by field inversion gel electrophoresis. Int J Radiat Biol. 1993 Jun;63(6):703–713. doi: 10.1080/09553009314552101. [DOI] [PubMed] [Google Scholar]
  22. Ward J. F. The yield of DNA double-strand breaks produced intracellularly by ionizing radiation: a review. Int J Radiat Biol. 1990 Jun;57(6):1141–1150. doi: 10.1080/09553009014551251. [DOI] [PubMed] [Google Scholar]
  23. West C. M., Davidson S. E., Roberts S. A., Hunter R. D. The independence of intrinsic radiosensitivity as a prognostic factor for patient response to radiotherapy of carcinoma of the cervix. Br J Cancer. 1997;76(9):1184–1190. doi: 10.1038/bjc.1997.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. West C. M. Invited review: intrinsic radiosensitivity as a predictor of patient response to radiotherapy. Br J Radiol. 1995 Aug;68(812):827–837. doi: 10.1259/0007-1285-68-812-827. [DOI] [PubMed] [Google Scholar]
  25. Whitaker S. J., Ung Y. C., McMillan T. J. DNA double-strand break induction and rejoining as determinants of human tumour cell radiosensitivity. A pulsed-field gel electrophoresis study. Int J Radiat Biol. 1995 Jan;67(1):7–18. doi: 10.1080/09553009514550021. [DOI] [PubMed] [Google Scholar]
  26. Wilks D. P., Barry J., Hughes M. F., West C. M. Assessment of light scatter by nucleoids as a rapid predictive assay of radiosensitivity. Radiat Res. 1996 Dec;146(6):628–635. [PubMed] [Google Scholar]
  27. Woudstra E. C., Brunsting J. F., Roesink J. M., Konings A. W., Kampinga H. H. Radiation induced DNA damage and damage repair in three human tumour cell lines. Mutat Res. 1996 Jan 2;362(1):51–59. doi: 10.1016/0921-8777(95)00032-1. [DOI] [PubMed] [Google Scholar]
  28. Wurm R., Burnet N. G., Duggal N., Yarnold J. R., Peacock J. H. Cellular radiosensitivity and DNA damage in primary human fibroblasts. Int J Radiat Oncol Biol Phys. 1994 Oct 15;30(3):625–633. doi: 10.1016/0360-3016(92)90949-i. [DOI] [PubMed] [Google Scholar]
  29. Zaffaroni N., Orlandi L., Villa R., Bearzatto A., Rofstad E. K., Silvestrini R. DNA double-strand break repair and radiation response in human tumour primary cultures. Int J Radiat Biol. 1994 Sep;66(3):279–285. doi: 10.1080/09553009414551211. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES