Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1998 Apr;77(8):1229–1235. doi: 10.1038/bjc.1998.207

The antiproliferative activity of all-trans-retinoic acid catabolites and isomers is differentially modulated by liarozole-fumarate in MCF-7 human breast cancer cells.

J Van heusden 1, W Wouters 1, F C Ramaekers 1, M D Krekels 1, L Dillen 1, M Borgers 1, G Smets 1
PMCID: PMC2150171  PMID: 9579827

Abstract

The clinical use of all-trans-retinoic acid (ATRA) in the treatment of cancer is significantly hampered by the prompt emergence of resistance, believed to be caused by increased ATRA catabolism. Inhibitors of ATRA catabolism may therefore prove valuable for cancer therapy. Liarozole-fumarate is an anti-tumour drug that inhibits the cytochrome P450-dependent catabolism of ATRA. ATRA, but also its naturally occurring catabolites, 4-oxo-ATRA and 5,6-epoxy-ATRA, as well as its stereoisomers, 9-cis-RA and 13-cis-RA, show significant antiproliferative activity in MCF-7 human breast cancer cells. To further elucidate its mechanism of action, we investigated whether liarozole-fumarate was able to enhance the antiproliferative activity of ATRA catabolites and isomers. Liarozole-fumarate alone up to a concentration of 10(-6) M had no effect on MCF-7 cell proliferation. However, in combination with ATRA or the ATRA catabolites, liarozole-fumarate (10(-6) M) significantly enhanced their antiproliferative activity. On the contrary, liarozole-fumarate (10(-6) M) was not able to potentiate the antiproliferative activity of the ATRA stereoisomers, most probably because of the absence of cytochrome P450-dependent catabolism. Together, these findings show that liarozole-fumarate acts as a versatile inhibitor of retinoid catabolism in that it not only blocks the breakdown of ATRA, but also inhibits the catabolic pathway of 4-oxo-ATRA and 5,6-epoxy-ATRA, thereby enhancing their antiproliferative activity.

Full text

PDF
1229

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acevedo P., Bertram J. S. Liarozole potentiates the cancer chemopreventive activity of and the up-regulation of gap junctional communication and connexin43 expression by retinoic acid and beta-carotene in 10T1/2 cells. Carcinogenesis. 1995 Sep;16(9):2215–2222. doi: 10.1093/carcin/16.9.2215. [DOI] [PubMed] [Google Scholar]
  2. Achkar C. C., Bentel J. M., Boylan J. F., Scher H. I., Gudas L. J., Miller W. H., Jr Differences in the pharmacokinetic properties of orally administered all-trans-retinoic acid and 9-cis-retinoic acid in the plasma of nude mice. Drug Metab Dispos. 1994 May-Jun;22(3):451–458. [PubMed] [Google Scholar]
  3. Barua A. B., Gunning D. B., Olson J. A. Metabolism in vivo of all-trans-[11-3H]retinoic acid after an oral dose in rats. Characterization of retinoyl beta-glucuronide in the blood and other tissues. Biochem J. 1991 Jul 15;277(Pt 2):527–531. doi: 10.1042/bj2770527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Coster R., Wouters W., Van Ginckel R., End D., Krekels M., Coene M. C., Bowden C. Experimental studies with liarozole (R 75,251): an antitumoral agent which inhibits retinoic acid breakdown. J Steroid Biochem Mol Biol. 1992 Sep;43(1-3):197–201. doi: 10.1016/0960-0760(92)90208-z. [DOI] [PubMed] [Google Scholar]
  5. Dijkman G. A., Van Moorselaar R. J., Van Ginckel R., Van Stratum P., Wouters L., Debruyne F. M., Schalken J. A., de Coster R. Antitumoral effects of liarozole in androgen-dependent and independent R3327-Dunning prostate adenocarcinomas. J Urol. 1994 Jan;151(1):217–222. doi: 10.1016/s0022-5347(17)34920-0. [DOI] [PubMed] [Google Scholar]
  6. Dolbeare F. Bromodeoxyuridine: a diagnostic tool in biology and medicine, Part I: Historical perspectives, histochemical methods and cell kinetics. Histochem J. 1995 May;27(5):339–369. [PubMed] [Google Scholar]
  7. Duell E. A., Kang S., Voorhees J. J. Retinoic acid isomers applied to human skin in vivo each induce a 4-hydroxylase that inactivates only trans retinoic acid. J Invest Dermatol. 1996 Feb;106(2):316–320. doi: 10.1111/1523-1747.ep12342972. [DOI] [PubMed] [Google Scholar]
  8. Frolik C. A., Roberts A. B., Tavela T. E., Roller P. P., Newton D. L., Sporn M. B. Isolation and identification of 4-hydroxy- and 4-oxoretinoic acid. In vitro metabolites of all-trans-retinoic acid in hamster trachea and liver. Biochemistry. 1979 May 15;18(10):2092–2097. doi: 10.1021/bi00577a039. [DOI] [PubMed] [Google Scholar]
  9. Gubler M. L., Sherman M. I. Metabolism of retinoic acid and retinol by intact cells and cell extracts. Methods Enzymol. 1990;189:525–530. doi: 10.1016/0076-6879(90)89331-b. [DOI] [PubMed] [Google Scholar]
  10. Hall A. K. Liarozole amplifies retinoid-induced apoptosis in human prostate cancer cells. Anticancer Drugs. 1996 May;7(3):312–320. doi: 10.1097/00001813-199605000-00012. [DOI] [PubMed] [Google Scholar]
  11. Horwitz K. B., McGuire W. L. Estrogen control of progesterone receptor in human breast cancer. Correlation with nuclear processing of estrogen receptor. J Biol Chem. 1978 Apr 10;253(7):2223–2228. [PubMed] [Google Scholar]
  12. Kizaki M., Ueno H., Yamazoe Y., Shimada M., Takayama N., Muto A., Matsushita H., Nakajima H., Morikawa M., Koeffler H. P. Mechanisms of retinoid resistance in leukemic cells: possible role of cytochrome P450 and P-glycoprotein. Blood. 1996 Jan 15;87(2):725–733. [PubMed] [Google Scholar]
  13. Krekels M. D., Verhoeven A., van Dun J., Cools W., Van Hove C., Dillen L., Coene M. C., Wouters W. Induction of the oxidative catabolism of retinoid acid in MCF-7 cells. Br J Cancer. 1997;75(8):1098–1104. doi: 10.1038/bjc.1997.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krekels M. D., Zimmerman J., Janssens B., Van Ginckel R., Cools W., Van Hove C., Coene M. C., Wouters W. Analysis of the oxidative catabolism of retinoic acid in rat Dunning R3327G prostate tumors. Prostate. 1996 Jul;29(1):36–41. doi: 10.1002/(SICI)1097-0045(199607)29:1<36::AID-PROS5>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  15. Lotan R. Effects of vitamin A and its analogs (retinoids) on normal and neoplastic cells. Biochim Biophys Acta. 1980 Mar 12;605(1):33–91. doi: 10.1016/0304-419x(80)90021-9. [DOI] [PubMed] [Google Scholar]
  16. Mahler C., Verhelst J., Denis L. Ketoconazole and liarozole in the treatment of advanced prostatic cancer. Cancer. 1993 Feb 1;71(3 Suppl):1068–1073. doi: 10.1002/1097-0142(19930201)71:3+<1068::aid-cncr2820711427>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  17. McCormick A. M., Napoli J. L., Schnoes H. K., DeLuca H. F. Isolation and identification of 5, 6-epoxyretinoic acid: a biologically active metabolite of retinoic acid. Biochemistry. 1978 Sep 19;17(19):4085–4090. doi: 10.1021/bi00612a033. [DOI] [PubMed] [Google Scholar]
  18. Muindi J., Frankel S. R., Miller W. H., Jr, Jakubowski A., Scheinberg D. A., Young C. W., Dmitrovsky E., Warrell R. P., Jr Continuous treatment with all-trans retinoic acid causes a progressive reduction in plasma drug concentrations: implications for relapse and retinoid "resistance" in patients with acute promyelocytic leukemia. Blood. 1992 Jan 15;79(2):299–303. [PubMed] [Google Scholar]
  19. Roberts A. B., Lamb L. C., Sporn M. B. Metabolism of all-trans-retinoic acid in hamster liver microsomes: oxidation of 4-hydroxy- to 4-keto-retinoic acid. Arch Biochem Biophys. 1980 Feb;199(2):374–383. doi: 10.1016/0003-9861(80)90293-3. [DOI] [PubMed] [Google Scholar]
  20. Smets G., Van Ginckel R., Daneels G., Moeremans M., Van Wauwe J., Coene M. C., Ramaekers F. C., Schalken J. A., Borgers M., De Coster R. Liarozole, an antitumor drug, modulates cytokeratin expression in the Dunning AT-6sq prostatic carcinoma through in situ accumulation of all-trans-retinoic acid. Prostate. 1995 Sep;27(3):129–140. doi: 10.1002/pros.2990270303. [DOI] [PubMed] [Google Scholar]
  21. Smith M. A., Adamson P. C., Balis F. M., Feusner J., Aronson L., Murphy R. F., Horowitz M. E., Reaman G., Hammond G. D., Fenton R. M. Phase I and pharmacokinetic evaluation of all-trans-retinoic acid in pediatric patients with cancer. J Clin Oncol. 1992 Nov;10(11):1666–1673. doi: 10.1200/JCO.1992.10.11.1666. [DOI] [PubMed] [Google Scholar]
  22. Stearns M. E., Wang M., Fudge K. Liarozole and 13-cis-retinoic acid anti-prostatic tumor activity. Cancer Res. 1993 Jul 1;53(13):3073–3077. [PubMed] [Google Scholar]
  23. Urbach J., Rando R. R. Isomerization of all-trans-retinoic acid to 9-cis-retinoic acid. Biochem J. 1994 Apr 15;299(Pt 2):459–465. doi: 10.1042/bj2990459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Van Ginckel R., De Coster R., Wouters W., Vanherck W., van der Veer R., Goeminne N., Jagers E., Van Cauteren H., Wouters L., Distelmans W. Antitumoral effects of R 75251 on the growth of transplantable R3327 prostatic adenocarcinoma in rats. Prostate. 1990;16(4):313–323. doi: 10.1002/pros.2990160406. [DOI] [PubMed] [Google Scholar]
  25. Van Heusden J., de Jong P., Ramaekers F., Bruwiere H., Borgers M., Smets G. Fluorescein-labeled tyramide strongly enhances the detection of low bromodeoxyuridine incorporation levels. J Histochem Cytochem. 1997 Feb;45(2):315–319. doi: 10.1177/002215549704500216. [DOI] [PubMed] [Google Scholar]
  26. Van Wauwe J. P., Coene M. C., Goossens J., Cools W., Monbaliu J. Effects of cytochrome P-450 inhibitors on the in vivo metabolism of all-trans-retinoic acid in rats. J Pharmacol Exp Ther. 1990 Jan;252(1):365–369. [PubMed] [Google Scholar]
  27. Van Wauwe J., Coene M. C., Cools W., Goossens J., Lauwers W., Le Jeune L., Van Hove C., Van Nyen G. Liarozole fumarate inhibits the metabolism of 4-keto-all-trans-retinoic acid. Biochem Pharmacol. 1994 Feb 11;47(4):737–741. doi: 10.1016/0006-2952(94)90137-6. [DOI] [PubMed] [Google Scholar]
  28. Van Wauwe J., Van Nyen G., Coene M. C., Stoppie P., Cools W., Goossens J., Borghgraef P., Janssen P. A. Liarozole, an inhibitor of retinoic acid metabolism, exerts retinoid-mimetic effects in vivo. J Pharmacol Exp Ther. 1992 May;261(2):773–779. [PubMed] [Google Scholar]
  29. Van heusden J., Borgers M., Ramaekers F., Xhonneux B., Wouters W., De Coster R., Smets G. Liarozole potentiates the all-trans-retinoic acid-induced structural remodelling in human breast carcinoma MCF-7 cells in vitro. Eur J Cell Biol. 1996 Sep;71(1):89–98. [PubMed] [Google Scholar]
  30. Van heusden J., Wouters W., Ramaekers F. C., Krekels M. D., Dillen L., Borgers M., Smets G. All-trans-retinoic acid metabolites significantly inhibit the proliferation of MCF-7 human breast cancer cells in vitro. Br J Cancer. 1998;77(1):26–32. doi: 10.1038/bjc.1998.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Warrell R. P., Jr Retinoid resistance in acute promyelocytic leukemia: new mechanisms, strategies, and implications. Blood. 1993 Oct 1;82(7):1949–1953. [PubMed] [Google Scholar]
  32. Warrell R. P., Jr, de Thé H., Wang Z. Y., Degos L. Acute promyelocytic leukemia. N Engl J Med. 1993 Jul 15;329(3):177–189. doi: 10.1056/NEJM199307153290307. [DOI] [PubMed] [Google Scholar]
  33. White J. A., Guo Y. D., Baetz K., Beckett-Jones B., Bonasoro J., Hsu K. E., Dilworth F. J., Jones G., Petkovich M. Identification of the retinoic acid-inducible all-trans-retinoic acid 4-hydroxylase. J Biol Chem. 1996 Nov 22;271(47):29922–29927. doi: 10.1074/jbc.271.47.29922. [DOI] [PubMed] [Google Scholar]
  34. Wouters W., van Dun J., Dillen A., Coene M. C., Cools W., De Coster R. Effects of liarozole, a new antitumoral compound, on retinoic acid-induced inhibition of cell growth and on retinoic acid metabolism in MCF-7 human breast cancer cells. Cancer Res. 1992 May 15;52(10):2841–2846. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES