Abstract
It has been proposed that the generation of O2 during photodynamic therapy (PDT) may lead to photochemical depletion of ambient tumour oxygen, thus causing acute hypoxia and limiting treatment effectiveness. We have studied the effects of fluence rate on pO2, in the murine RIF tumour during and after PDT using 5 mg kg(-1) Photofrin and fluence rates of 30, 75 or 150 mW cm(-2). Median pO2 before PDT ranged from 2.9 to 5.2 mmHg in three treatment groups. Within the first minute of illumination, median tumour pO2 decreased with all fluence rates to values between 0.7 and 1.1 mmHg. These effects were rapidly and completely reversible if illumination was interrupted. During prolonged illumination (20-50 J cm(-2)) pO2 recovered at the 30 mW cm(-2) fluence rate to a median value of 7.4 mmHg, but remained low at the 150 mW cm(-2) fluence rate (median pO2 1.7 mmHg). Fluence rate effects were not found after PDT, and at both 30 and 150 mW cm(-2) median tumour pO2 fell from control levels to 1.0-1.8 mmHg within 1-3 h after treatment conclusion. PDT with 100 J cm(-2) at 30 mW cm(-2) caused significantly (P = 0.0004) longer median tumour regrowth times than PDT at 150 mW cm(-2), indicating that lower fluence rate can improve PDT response. Vascular perfusion studies uncovered significant fluence rate-dependent differences in the responses of the normal and tumour vasculature. These data establish a direct relationship between tumour pO2, the fluence rate applied during PDT and treatment outcome. The findings are of immediate clinical relevance.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bellnier D. A., Greco W. R., Parsons J. C., Oseroff A. R., Kuebler A., Dougherty T. J. An assay for the quantitation of Photofrin in tissues and fluids. Photochem Photobiol. 1997 Aug;66(2):237–244. doi: 10.1111/j.1751-1097.1997.tb08649.x. [DOI] [PubMed] [Google Scholar]
- Bellnier D. A., Potter W. R., Vaughan L. A., Sitnik T. M., Parsons J. C., Greco W. R., Whitaker J., Johnson P., Henderson B. W. The validation of a new vascular damage assay for photodynamic therapy agents. Photochem Photobiol. 1995 Nov;62(5):896–905. doi: 10.1111/j.1751-1097.1995.tb09153.x. [DOI] [PubMed] [Google Scholar]
- Blant S. A., Woodtli A., Wagnières G., Fontolliet C., van den Bergh H., Monnier P. In vivo fluence rate effect in photodynamic therapy of early cancers with tetra(m-hydroxyphenyl)chlorin. Photochem Photobiol. 1996 Dec;64(6):963–968. doi: 10.1111/j.1751-1097.1996.tb01862.x. [DOI] [PubMed] [Google Scholar]
- Chen Q., Chen H., Hetzel F. W. Tumor oxygenation changes post-photodynamic therapy. Photochem Photobiol. 1996 Jan;63(1):128–131. doi: 10.1111/j.1751-1097.1996.tb03003.x. [DOI] [PubMed] [Google Scholar]
- Fenton B. M., Way B. A. Vascular morphometry of KHT and RIF-1 murine sarcomas. Radiother Oncol. 1993 Jul;28(1):57–62. doi: 10.1016/0167-8140(93)90186-c. [DOI] [PubMed] [Google Scholar]
- Fingar V. H., Wieman T. J., Park Y. J., Henderson B. W. Implications of a pre-existing tumor hypoxic fraction on photodynamic therapy. J Surg Res. 1992 Nov;53(5):524–528. doi: 10.1016/0022-4804(92)90101-5. [DOI] [PubMed] [Google Scholar]
- Fingar V. H., Wieman T. J., Wiehle S. A., Cerrito P. B. The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability, and leukocyte adhesion. Cancer Res. 1992 Sep 15;52(18):4914–4921. [PubMed] [Google Scholar]
- Foster T. H., Hartley D. F., Nichols M. G., Hilf R. Fluence rate effects in photodynamic therapy of multicell tumor spheroids. Cancer Res. 1993 Mar 15;53(6):1249–1254. [PubMed] [Google Scholar]
- Foster T. H., Murant R. S., Bryant R. G., Knox R. S., Gibson S. L., Hilf R. Oxygen consumption and diffusion effects in photodynamic therapy. Radiat Res. 1991 Jun;126(3):296–303. doi: 10.2307/3577919. [DOI] [PubMed] [Google Scholar]
- Georgakoudi I., Nichols M. G., Foster T. H. The mechanism of Photofrin photobleaching and its consequences for photodynamic dosimetry. Photochem Photobiol. 1997 Jan;65(1):135–144. doi: 10.1111/j.1751-1097.1997.tb01889.x. [DOI] [PubMed] [Google Scholar]
- Gibson S. L., VanDerMeid K. R., Murant R. S., Raubertas R. F., Hilf R. Effects of various photoradiation regimens on the antitumor efficacy of photodynamic therapy for R3230AC mammary carcinomas. Cancer Res. 1990 Nov 15;50(22):7236–7241. [PubMed] [Google Scholar]
- Gomer C. J., Razum N. J. Acute skin response in albino mice following porphyrin photosensitization under oxic and anoxic conditions. Photochem Photobiol. 1984 Oct;40(4):435–439. doi: 10.1111/j.1751-1097.1984.tb04614.x. [DOI] [PubMed] [Google Scholar]
- Henderson B. W., Dougherty T. J. How does photodynamic therapy work? Photochem Photobiol. 1992 Jan;55(1):145–157. doi: 10.1111/j.1751-1097.1992.tb04222.x. [DOI] [PubMed] [Google Scholar]
- Henderson B. W., Fingar V. H. Oxygen limitation of direct tumor cell kill during photodynamic treatment of a murine tumor model. Photochem Photobiol. 1989 Mar;49(3):299–304. doi: 10.1111/j.1751-1097.1989.tb04110.x. [DOI] [PubMed] [Google Scholar]
- Henderson B. W., Fingar V. H. Relationship of tumor hypoxia and response to photodynamic treatment in an experimental mouse tumor. Cancer Res. 1987 Jun 15;47(12):3110–3114. [PubMed] [Google Scholar]
- Henning J. P., Fournier R. L., Hampton J. A. A transient mathematical model of oxygen depletion during photodynamic therapy. Radiat Res. 1995 May;142(2):221–226. [PubMed] [Google Scholar]
- Horsman M. R., Khalil A. A., Siemann D. W., Grau C., Hill S. A., Lynch E. M., Chaplin D. J., Overgaard J. Relationship between radiobiological hypoxia in tumors and electrode measurements of tumor oxygenation. Int J Radiat Oncol Biol Phys. 1994 Jun 15;29(3):439–442. doi: 10.1016/0360-3016(94)90434-0. [DOI] [PubMed] [Google Scholar]
- Kavanagh M. C., Sun A., Hu Q., Hill R. P. Comparing techniques of measuring tumor hypoxia in different murine tumors: Eppendorf pO2 Histograph, [3H]misonidazole binding and paired survival assay. Radiat Res. 1996 Apr;145(4):491–500. [PubMed] [Google Scholar]
- Lyng H., Skretting A., Rofstad E. K. Blood flow in six human melanoma xenograft lines with different growth characteristics. Cancer Res. 1992 Feb 1;52(3):584–592. [PubMed] [Google Scholar]
- Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep. 1966 Mar;50(3):163–170. [PubMed] [Google Scholar]
- Moan J., Sommer S. Oxygen dependence of the photosensitizing effect of hematoporphyrin derivative in NHIK 3025 cells. Cancer Res. 1985 Apr;45(4):1608–1610. [PubMed] [Google Scholar]
- Nichols M. G., Foster T. H. Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids. Phys Med Biol. 1994 Dec;39(12):2161–2181. doi: 10.1088/0031-9155/39/12/003. [DOI] [PubMed] [Google Scholar]
- Rofstad E. K., Fenton B. M., Sutherland R. M. Intracapillary HbO2 saturations in murine tumours and human tumour xenografts measured by cryospectrophotometry: relationship to tumour volume, tumour pH and fraction of radiobiologically hypoxic cells. Br J Cancer. 1988 May;57(5):494–502. doi: 10.1038/bjc.1988.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stone H. B., Brown J. M., Phillips T. L., Sutherland R. M. Oxygen in human tumors: correlations between methods of measurement and response to therapy. Summary of a workshop held November 19-20, 1992, at the National Cancer Institute, Bethesda, Maryland. Radiat Res. 1993 Dec;136(3):422–434. [PubMed] [Google Scholar]
- Tromberg B. J., Orenstein A., Kimel S., Barker S. J., Hyatt J., Nelson J. S., Berns M. W. In vivo tumor oxygen tension measurements for the evaluation of the efficiency of photodynamic therapy. Photochem Photobiol. 1990 Aug;52(2):375–385. doi: 10.1111/j.1751-1097.1990.tb04193.x. [DOI] [PubMed] [Google Scholar]
- Twentyman P. R., Brown J. M., Gray J. W., Franko A. J., Scoles M. A., Kallman R. F. A new mouse tumor model system (RIF-1) for comparison of end-point studies. J Natl Cancer Inst. 1980 Mar;64(3):595–604. [PubMed] [Google Scholar]
- Vaupel P., Kallinowski F., Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989 Dec 1;49(23):6449–6465. [PubMed] [Google Scholar]
- Vaupel P., Schlenger K., Knoop C., Höckel M. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res. 1991 Jun 15;51(12):3316–3322. [PubMed] [Google Scholar]
- van Geel I. P., Oppelaar H., Oussoren Y. G., Stewart F. A. Changes in perfusion of mouse tumours after photodynamic therapy. Int J Cancer. 1994 Jan 15;56(2):224–228. doi: 10.1002/ijc.2910560214. [DOI] [PubMed] [Google Scholar]
- van Geel I. P., Oppelaar H., Rijken P. F., Bernsen H. J., Hagemeier N. E., van der Kogel A. J., Hodgkiss R. J., Stewart F. A. Vascular perfusion and hypoxic areas in RIF-1 tumours after photodynamic therapy. Br J Cancer. 1996 Feb;73(3):288–293. doi: 10.1038/bjc.1996.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
