Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1983 Oct;156(1):192–197. doi: 10.1128/jb.156.1.192-197.1983

Uracil phosphoribosyltransferase from Acholeplasma laidlawii: partial purification and kinetic properties.

R S McIvor, R M Wohlhueter, P G Plagemann
PMCID: PMC215069  PMID: 6619094

Abstract

Uracil phosphoribosyltransferase was purified 34-fold from sonicated extracts of Acholeplasma laidlawii by ammonium sulfate precipitation, binding to DEAE-Sephadex, Sephadex G-200 chromatography, and hydroxylapatite chromatography. The molecular weight of the enzyme by gel filtration was approximately 80,000. The pH optimum for phosphoribosylation was around 7.5, and the optimum MgCl2 concentration was 5 mM. Initial velocity studies were conducted over a wide range of both uracil and 5-phosphoribosyl-1-pyrophosphate (P-Rib-PP) concentrations, and various equations for biomolecular reaction mechanisms were fitted to the data by nonlinear regression. When the equation for an ordered sequential mechanism was fitted to the data, the Kia thus obtained was not statistically different from zero. This is interpreted as evidence for a nonsequential ("ping-pong") reaction. Graphic analysis of the data by the Hanes-Woolf linear transform supported this conclusion. The enzyme has high affinity for uracil (KmUra = 4.2 microM; KmP-Rib-PP = 66 microM), which provides supporting evidence that this activity is responsible for the incorporation of uracil and uridine into nucleotides.

Full text

PDF
192

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck C. F., Ingraham J. L., Neuhard J., Thomassen E. Metabolism of pyrimidines and pyrimidine nucleosides by Salmonella typhimurium. J Bacteriol. 1972 Apr;110(1):219–228. doi: 10.1128/jb.110.1.219-228.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CRAWFORD I., KORNBERG A., SIMMS E. S. Conversion of uracil and orotate to uridine 5'-phosphate by enzymes in lactobacilli. J Biol Chem. 1957 Jun;226(2):1093–1101. [PubMed] [Google Scholar]
  3. Cleland W. W. The statistical analysis of enzyme kinetic data. Adv Enzymol Relat Areas Mol Biol. 1967;29:1–32. doi: 10.1002/9780470122747.ch1. [DOI] [PubMed] [Google Scholar]
  4. Dalke P., Magill J. M. Specificity of uracil uptake in Neurospora crassa. J Bacteriol. 1979 Jul;139(1):212–219. doi: 10.1128/jb.139.1.212-219.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FABRICANT C. G., FABRICANT J., VANDEMARK P. J. STUDIES ON THE NUTRITION AND GROWTH REQUIREMENTS OF MYCOPLASMA GALLISEPTICUM. J Gen Microbiol. 1964 Apr;35:135–144. doi: 10.1099/00221287-35-1-135. [DOI] [PubMed] [Google Scholar]
  6. Fast R., Sköld O. Biochemical mechanism of uracil uptake regulation in Escherichia coli B. Allosteric effects on uracil phosphoribosyltransferase under stringent conditions. J Biol Chem. 1977 Nov 10;252(21):7620–7624. [PubMed] [Google Scholar]
  7. Hamet M., Bonissol C., Cartier P. Enzymatic activities on purine pyrimidine metabolism in nine mycoplasma species contaminating cell cultures. Clin Chim Acta. 1980 Apr 11;103(1):15–22. doi: 10.1016/0009-8981(80)90225-9. [DOI] [PubMed] [Google Scholar]
  8. Henderson J. F., Brox L. W., Kelley W. N., Rosenbloom F. M., Seegmiller J. E. Kinetic studies of hypoxanthine-guanine phosphoribosyltransferase. J Biol Chem. 1968 May 25;243(10):2514–2522. [PubMed] [Google Scholar]
  9. Hori M., Henderson J. F. Kinetic studies of adenine phosphoribosyltransferase. J Biol Chem. 1966 Jul 25;241(14):3404–3408. [PubMed] [Google Scholar]
  10. Krenitsky T. A., Papaioannou R. Human hypoxanthine phosphoribosyltransferase. II. Kinetics and chemical modification. J Biol Chem. 1969 Mar 10;244(5):1271–1277. [PubMed] [Google Scholar]
  11. Liska B., Smith P. F. Requirements of Acholeplasma laidlawii A, strain LA 1, for nucleic acid precursors. Folia Microbiol (Praha) 1974;19(2):107–117. doi: 10.1007/BF02872843. [DOI] [PubMed] [Google Scholar]
  12. Long C. W., DelGiudice R., Gardella R. S., Hatanaka M. Uracil phosphoribosyl transferase activity of mycoplasma and infected cell cultures. In Vitro. 1977 Jul;13(7):429–433. doi: 10.1007/BF02615103. [DOI] [PubMed] [Google Scholar]
  13. McIvor R. S., Kenny G. E. Differences in incorporation of nucleic acid bases and nucleosides by various Mycoplasma and Acholeplasma species. J Bacteriol. 1978 Aug;135(2):483–489. doi: 10.1128/jb.135.2.483-489.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McIvor R. S., Wohlhueter R. M., Plagemann P. G. Uridine phosphorylase from Acholeplasma laidlawii: purification and kinetic properties. J Bacteriol. 1983 Oct;156(1):198–204. doi: 10.1128/jb.156.1.198-204.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mitchell A., Finch L. R. Enzymes of pyrimidine metabolism in Mycoplasma mycoides subsp. mycoides. J Bacteriol. 1979 Mar;137(3):1073–1080. doi: 10.1128/jb.137.3.1073-1080.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Molloy A., Finch L. R. Uridine-5'-monophosphate pyrophosphorylase activity from Escherichia coli. FEBS Lett. 1969 Nov 12;5(3):211–213. doi: 10.1016/0014-5793(69)80334-0. [DOI] [PubMed] [Google Scholar]
  17. Perez A. G., Kim J. H., Gelbard A. S., Djordjevic B. Altered incorporation of nucleic acid precursors by mycoplasma-infected mammalian cells in culture. Exp Cell Res. 1972 Feb;70(2):301–310. doi: 10.1016/0014-4827(72)90140-1. [DOI] [PubMed] [Google Scholar]
  18. RAZIN S., COHEN A. Nutritional requirements and metabolism of Mycoplasma laidlawii. J Gen Microbiol. 1963 Jan;30:141–154. doi: 10.1099/00221287-30-1-141. [DOI] [PubMed] [Google Scholar]
  19. RAZIN S. Nucleic acid precursor requirements of Mycoplasma laidlawii. J Gen Microbiol. 1962 Jun;28:243–250. doi: 10.1099/00221287-28-2-243. [DOI] [PubMed] [Google Scholar]
  20. Rodwell A. W. A defined medium for Mycoplasma strain Y. J Gen Microbiol. 1969 Sep;58(1):39–47. doi: 10.1099/00221287-58-1-39. [DOI] [PubMed] [Google Scholar]
  21. Schneider E. L., Stanbridge E. J., Epstein C. J. Incorporation of 3H-uridine and 3H-uracil into RNA: a simple technique for the detection of mycoplasma contamination of cultured cells. Exp Cell Res. 1974 Mar 15;84(1):311–318. doi: 10.1016/0014-4827(74)90411-x. [DOI] [PubMed] [Google Scholar]
  22. Smith D. W., Hanawalt P. C. Macromolecular synthesis and thymineless death in Mycoplasma laidlawii B. J Bacteriol. 1968 Dec;96(6):2066–2076. doi: 10.1128/jb.96.6.2066-2076.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. TOURTELLOTTE M. E., MOROWITZ H. J., KASIMER P. DEFINED MEDIUM FOR MYCOPLASMA LAIDLAWII. J Bacteriol. 1964 Jul;88:11–15. doi: 10.1128/jb.88.1.11-15.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Victor J., Greenberg L. B., Sloan D. L. Studies of the kinetic mechanism of orotate phosphoribosyltransferase from yeast. J Biol Chem. 1979 Apr 25;254(8):2647–2655. [PubMed] [Google Scholar]
  25. Wohlhueter R. M. Hypoxanthine phosphoribosyltransferase activity in normal, developing, and neoplastic tissues of the rat. Eur J Cancer. 1975 Jul;11(7):463–472. doi: 10.1016/0014-2964(75)90147-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES