Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1986 Jun;166(3):866–871. doi: 10.1128/jb.166.3.866-871.1986

Consequences of reduced intracellular coenzyme A content in Escherichia coli.

S Jackowski, C O Rock
PMCID: PMC215206  PMID: 3519582

Abstract

Escherichia coli beta-alanine auxotrophs (panD2) were used to manipulate the specific cellular content of coenzyme A (CoA) and assess the associated physiological effects. Growth-limiting concentrations of CoA resulted in an increase in phospholipid/protein ratio in relA1 mutants, but not in their rel+ counterparts, indicating that protein biosynthesis was more severely affected by CoA deprivation than phospholipid biosynthesis. Acetyl-CoA was the dominant component (79.8%) of the CoA pool in cells exponentially growing in glucose-minimal medium, with significant concentrations of CoA (13.8%) and succinyl-CoA (5.9%) also detected. Malonyl-CoA was a minor species (0.5%), and the mixed disulfide of CoA and glutathione was not present. Acetyl-CoA was also the major constituent in cells depleted of CoA. On the other hand, succinyl-CoA was absent, suggesting that the protein synthesis defect may be due to the inability to generate sufficient quantities of precursors via the tricarboxylic acid cycle to support amino acid biosynthesis. Production of acyl carrier protein was controlled in part by the availability of CoA, and the lower concentration of acyl carrier protein in CoA-depleted cells was associated with a concomitant decrease in the saturated/unsaturated fatty acid ratio.

Full text

PDF
866

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberts A. W., Vagelos P. R. Acyl carrier protein. 8. Studies of acyl carrier protein and coenzyme A in Escherichia coli pantothenate or betaalanine auxotrophs. J Biol Chem. 1966 Nov 25;241(22):5201–5204. [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Bochner B. R., Ames B. N. Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J Biol Chem. 1982 Aug 25;257(16):9759–9769. [PubMed] [Google Scholar]
  4. Cronan J. E., Jr Beta-alanine synthesis in Escherichia coli. J Bacteriol. 1980 Mar;141(3):1291–1297. doi: 10.1128/jb.141.3.1291-1297.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cronan J. E., Jr, Littel K. J., Jackowski S. Genetic and biochemical analyses of pantothenate biosynthesis in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1982 Mar;149(3):916–922. doi: 10.1128/jb.149.3.916-922.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeBuysere M. S., Olson M. S. The analysis of acyl-coenzyme A derivatives by reverse-phase high-performance liquid chromatography. Anal Biochem. 1983 Sep;133(2):373–379. doi: 10.1016/0003-2697(83)90097-0. [DOI] [PubMed] [Google Scholar]
  7. Elovson J., Vagelos P. R. Acyl carrier protein. X. Acyl carrier protein synthetase. J Biol Chem. 1968 Jul 10;243(13):3603–3611. [PubMed] [Google Scholar]
  8. Fiil N. P., Willumsen B. M., Friesen J. D., von Meyenburg K. Interaction of alleles of the relA, relC and spoT genes in Escherichia coli: analysis of the interconversion of GTP, ppGpp and pppGpp. Mol Gen Genet. 1977 Jan 7;150(1):87–101. doi: 10.1007/BF02425329. [DOI] [PubMed] [Google Scholar]
  9. Jackowski S., Rock C. O. Metabolism of 4'-phosphopantetheine in Escherichia coli. J Bacteriol. 1984 Apr;158(1):115–120. doi: 10.1128/jb.158.1.115-120.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jackowski S., Rock C. O. Ratio of active to inactive forms of acyl carrier protein in Escherichia coli. J Biol Chem. 1983 Dec 25;258(24):15186–15191. [PubMed] [Google Scholar]
  11. Jackowski S., Rock C. O. Regulation of coenzyme A biosynthesis. J Bacteriol. 1981 Dec;148(3):926–932. doi: 10.1128/jb.148.3.926-932.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jackowski S., Rock C. O. Turnover of the 4'-phosphopantetheine prosthetic group of acyl carrier protein. J Biol Chem. 1984 Feb 10;259(3):1891–1895. [PubMed] [Google Scholar]
  13. King M. T., Reiss P. D. Separation and measurement of short-chain coenzyme-A compounds in rat liver by reversed-phase high-performance liquid chromatography. Anal Biochem. 1985 Apr;146(1):173–179. doi: 10.1016/0003-2697(85)90412-9. [DOI] [PubMed] [Google Scholar]
  14. Loewen P. C. Effect of glutathione deficiency on the pool of CoA-glutathione mixed disulfide in Escherichia coli. Can J Biochem. 1981 May;59(5):379–382. doi: 10.1139/o81-052. [DOI] [PubMed] [Google Scholar]
  15. Loewen P. C. Levels of coenzyme A--glutathione mixed disulfide in Escherichia coli. Can J Biochem. 1978 Jul;56(7):753–759. doi: 10.1139/o78-113. [DOI] [PubMed] [Google Scholar]
  16. Loewen P. C. Levels of glutathione in Escherichia coli. Can J Biochem. 1979 Feb;57(2):107–111. doi: 10.1139/o79-013. [DOI] [PubMed] [Google Scholar]
  17. Loewen P. C. Novel nucleotides from E. coli isolated and partially characterized. Biochem Biophys Res Commun. 1976 Jun 21;70(4):1210–1218. doi: 10.1016/0006-291x(76)91031-7. [DOI] [PubMed] [Google Scholar]
  18. MUNKRES K. D., RICHARDS F. M. THE PURIFICATION AND PROPERTIES OF NEUROSPORA MALATE DEHYDROGENASE. Arch Biochem Biophys. 1965 Mar;109:466–479. doi: 10.1016/0003-9861(65)90391-7. [DOI] [PubMed] [Google Scholar]
  19. Powell G. L., Elovson J., Vagelos P. R. Acyl carrier protein. XII. Synthesis and turnover of the prosthetic group of acyl carrier protein in vivo. J Biol Chem. 1969 Oct 25;244(20):5616–5624. [PubMed] [Google Scholar]
  20. Rock C. O. Mixed disulfides of acyl carrier protein and coenzyme A with specific soluble proteins in Escherichia coli. J Bacteriol. 1982 Dec;152(3):1298–1300. doi: 10.1128/jb.152.3.1298-1300.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Showe M. K., DeMoss J. A. Localization and regulation of synthesis of nitrate reductase in Escherichia coli. J Bacteriol. 1968 Apr;95(4):1305–1313. doi: 10.1128/jb.95.4.1305-1313.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stewart J. C. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem. 1980 May 1;104(1):10–14. doi: 10.1016/0003-2697(80)90269-9. [DOI] [PubMed] [Google Scholar]
  23. Walsh K., Koshland D. E., Jr Branch point control by the phosphorylation state of isocitrate dehydrogenase. A quantitative examination of fluxes during a regulatory transition. J Biol Chem. 1985 Jul 15;260(14):8430–8437. [PubMed] [Google Scholar]
  24. Williamson J. M., Brown G. M. Purification and properties of L-Aspartate-alpha-decarboxylase, an enzyme that catalyzes the formation of beta-alanine in Escherichia coli. J Biol Chem. 1979 Aug 25;254(16):8074–8082. [PubMed] [Google Scholar]
  25. Zwaig N., Kistler W. S., Lin E. C. Glycerol kinase, the pacemaker for the dissimilation of glycerol in Escherichia coli. J Bacteriol. 1970 Jun;102(3):753–759. doi: 10.1128/jb.102.3.753-759.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES