Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Feb;157(2):368–374. doi: 10.1128/jb.157.2.368-374.1984

Transmethylation inhibitors decrease chemotactic sensitivity and delay cell aggregation in Dictyostelium discoideum.

A van Waarde, P J van Haastert
PMCID: PMC215256  PMID: 6319356

Abstract

In Dictyostelium discoideum, extracellular cyclic AMP (cAMP) induces chemotaxis and cell aggregation. Suspensions of cAMP-sensitive cells respond to a cAMP pulse with a rapid, transient increase of protein carboxyl methylation. The transmethylation inhibitors cycloleucine, L-homocysteine thiolactone, and coformycin decrease chemotactic sensitivity and delay cell aggregation when administered in concentrations which do not influence cAMP binding to cell surface receptors or the activity of total phosphodiesterase. The ability of the drugs to inhibit chemotaxis could be correlated with their capacity to convert the initial transient positive response of carboxyl methylation to cAMP into a negative one. This suggests that both protein O-methyltransferase and protein methylesterase are activated after stimulation of aggregative cells with cAMP, the net effect being a transient, positive response of methylation. In the presence of a sufficiently large dose of inhibitor, methyltransferase is inhibited, whereas methylesterase activity is much less affected, so that a transient negative response of methylation to cAMP is observed. The slow, positive response of carboxyl methylation to cAMP which occurs ca. 2.5 to 5 min after stimulus administration is not affected by inhibitors of transmethylation. These results suggest that methylation reactions are involved in the chemotactic response of D. discoideum cells to cAMP.

Full text

PDF
368

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aksamit R. R., Falk W., Cantoni G. L. Inhibition of chemotaxis by S-3-deazaadenosylhomocysteine in a mouse macrophage cell line. J Biol Chem. 1982 Jan 25;257(2):621–625. [PubMed] [Google Scholar]
  2. Aswad D. W., Koshland D. E., Jr Evidence for an S-adenosylmethionine requirement in the chemotactic behavior of Salmonella typhimurium. J Mol Biol. 1975 Sep 15;97(2):207–223. doi: 10.1016/s0022-2836(75)80035-0. [DOI] [PubMed] [Google Scholar]
  3. Braun J., Rosen F. S., Unanue E. R. Capping and adenosine metabolism. Genetic and pharmacologic studies. J Exp Med. 1980 Jan 1;151(1):174–183. doi: 10.1084/jem.151.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cha S., Agarwal R. P., Parks R. E., Jr Tight-binding inhibitors-II. Non-steady state nature of inhibition of milk xanthine oxidase by allopurinol and alloxanthine and of human erythrocytic adenosine deaminase by coformycin. Biochem Pharmacol. 1975 Dec 1;24(23):2187–2197. doi: 10.1016/0006-2952(75)90051-9. [DOI] [PubMed] [Google Scholar]
  5. Coulter A. W., Lombardini J. B., Sufrin J. R., Talalay P. Structural and conformational analogues of L-methionine as inhibitors of the enzymatic synthesis of S-adenosyl-l-methionine. 3. Carbocyclic and heterocyclic amino acids. Mol Pharmacol. 1974 Mar;10(2):319–334. [PubMed] [Google Scholar]
  6. Darmon M., Barra J., Brachet P. The role of phosphodiesterase in aggregation of Dictyostelium discoideum. J Cell Sci. 1978 Jun;31:233–243. doi: 10.1242/jcs.31.1.233. [DOI] [PubMed] [Google Scholar]
  7. Gagnon C., Viveros O. H., Diliberto E. J., Jr, Axelrod J. Enzymatic methylation of carboxyl groups of chromaffin granule membrane proteins. J Biol Chem. 1978 Jun 10;253(11):3778–3781. [PubMed] [Google Scholar]
  8. Green A. A., Newell P. C. Evidence for the existence of two types of cAMP binding sites in aggregating cells of Dictyostelium discoideum. Cell. 1975 Oct;6(2):129–136. doi: 10.1016/0092-8674(75)90003-3. [DOI] [PubMed] [Google Scholar]
  9. Henderson E. J. The cyclic adenosine 3':5'-monophosphate receptor of Dictyostelium discoideum. Binding characteristics of aggregation-competent cells and variation of binding levels during the life cycle. J Biol Chem. 1975 Jun 25;250(12):4730–4736. [PubMed] [Google Scholar]
  10. Hoffman D. R., Marion D. W., Cornatzer W. E., Duerre J. A. S-Adenosylmethionine and S-adenosylhomocystein metabolism in isolated rat liver. Effects of L-methionine, L-homocystein, and adenosine. J Biol Chem. 1980 Nov 25;255(22):10822–10827. [PubMed] [Google Scholar]
  11. Hoffman J. L. The rate of transmethylation in mouse liver as measured by trapping S-adenosylhomocysteine. Arch Biochem Biophys. 1980 Nov;205(1):132–135. doi: 10.1016/0003-9861(80)90091-0. [DOI] [PubMed] [Google Scholar]
  12. Johnston J. M., Kredich N. M. Inhibition of methylation by adenosine in adenosine deaminase-inhibited, phytohemagglutinin-stimulated human lymphocytes. J Immunol. 1979 Jul;123(1):97–103. [PubMed] [Google Scholar]
  13. Kim S., Galletti P., Paik W. K. In vivo carboxyl methylation of human eruthrocyte membrane proteins. J Biol Chem. 1980 Jan 25;255(2):338–341. [PubMed] [Google Scholar]
  14. Konijn T. M. Cyclic AMP as a first messenger. Adv Cyclic Nucleotide Res. 1972;1:17–31. [PubMed] [Google Scholar]
  15. Konijn T. M. Microbiological assay of cyclic 3',5'-AMP. Experientia. 1970 Apr 15;26(4):367–369. doi: 10.1007/BF01896891. [DOI] [PubMed] [Google Scholar]
  16. Konijn T. M., Van De Meene J. G., Bonner J. T., Barkley D. S. The acrasin activity of adenosine-3',5'-cyclic phosphate. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1152–1154. doi: 10.1073/pnas.58.3.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Koshland D. E., Jr A model regulatory system: bacterial chemotaxis. Physiol Rev. 1979 Oct;59(4):811–862. doi: 10.1152/physrev.1979.59.4.811. [DOI] [PubMed] [Google Scholar]
  18. Kredich N. M., Hershfield M. S. S-adenosylhomocysteine toxicity in normal and adenosine kinase-deficient lymphoblasts of human origin. Proc Natl Acad Sci U S A. 1979 May;76(5):2450–2454. doi: 10.1073/pnas.76.5.2450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lambe C. U., Nelson D. J. Pharmacokinetics of inhibition of adenosine deaminase by erythro-9-(2-hydroxy-3-nonyl)adenine in CBA mice. Biochem Pharmacol. 1982 Feb 15;31(4):535–539. doi: 10.1016/0006-2952(82)90156-3. [DOI] [PubMed] [Google Scholar]
  20. Lombardini J. B., Coulter A. W., Talalay P. Analogues of methionine as substrates and inhibitors of the methionine adenosyltransferase reaction. Deductions concerning the conformation of methionine. Mol Pharmacol. 1970 Sep;6(5):481–499. [PubMed] [Google Scholar]
  21. Lombardini J. B., Talalay P. Effect of inhibitors of adenosine triphosphate: L-methionine S-adenosyltransferase on levels of S-adenosyl-L-methionine and L-methionine in normal and malignant mammalian tissues. Mol Pharmacol. 1973 Jul;9(4):542–560. [PubMed] [Google Scholar]
  22. Malchow D., Gerisch G. Short-term binding and hydrolysis of cyclic 3':5'-adenosine monophosphate by aggregating Dictyostelium cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2423–2427. doi: 10.1073/pnas.71.6.2423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mato J. M., Konijn T. M. Chemotaxis and binding of cyclic AMP in cellular slime molds. Biochim Biophys Acta. 1975 Apr 7;385(2):173–179. doi: 10.1016/0304-4165(75)90345-1. [DOI] [PubMed] [Google Scholar]
  24. Mato J. M., Marín-Cao D. Protein and phospholipid methylation during chemotaxis in Dictyostelium discoideum and its relationship to calcium movements. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6106–6109. doi: 10.1073/pnas.76.12.6106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Morita Y., Chiang P. K., Siraganian R. P. Effect of inhibitors of transmethylation on histamine release from human basophils. Biochem Pharmacol. 1981 Apr 1;30(7):785–791. doi: 10.1016/0006-2952(81)90166-0. [DOI] [PubMed] [Google Scholar]
  26. Morita Y., Siraganian R. P. Inhibition of IgE-mediated histamine release from rat basophilic leukemia cells and rat mast cells by inhibitors of transmethylation. J Immunol. 1981 Oct;127(4):1339–1344. [PubMed] [Google Scholar]
  27. Nakamura H., Koyama G., Iitaka Y., Ono M., Yagiawa N. Structure of coformycin, an unusual nucleoside of microbial origin. J Am Chem Soc. 1974 Jun 26;96(13):4327–4328. doi: 10.1021/ja00820a049. [DOI] [PubMed] [Google Scholar]
  28. O'Dea R. F., Viveros O. H., Axelrod J., Aswanikaumar S., Schiffmann E., Corcoran B. A. Raipid stimulation of protein carboxymethylation in leukocytes by a chemotatic peptide. Nature. 1978 Mar 30;272(5652):462–464. doi: 10.1038/272462a0. [DOI] [PubMed] [Google Scholar]
  29. Pan P., Hall E. M., Bonner J. T. Folic acid as second chemotactic substance in the cellular slime moulds. Nat New Biol. 1972 Jun 7;237(75):181–182. doi: 10.1038/newbio237181a0. [DOI] [PubMed] [Google Scholar]
  30. Pike M. C., Kredich N. M., Snyderman R. Requirement of S-adenosyl-L-methionine-mediated methylation for human monocyte chemotaxis. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3928–3932. doi: 10.1073/pnas.75.8.3928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pike M. C., Snyderman R. Transmethylation reactions are required for initial morphologic and biochemical responses of human monocytes to chemoattractants. J Immunol. 1981 Oct;127(4):1444–1449. [PubMed] [Google Scholar]
  32. Povilaitis V., Gagnon C., Heisler S. Stimulus-secretion coupling in exocrine pancreas: role of protein carboxyl methylation. Am J Physiol. 1981 Mar;240(3):G199–G205. doi: 10.1152/ajpgi.1981.240.3.G199. [DOI] [PubMed] [Google Scholar]
  33. Rollins C. M., Dahlquist F. W. Methylation of chemotaxis-specific proteins in Escherichia coli cells permeable to S-adenosylmethionine. Biochemistry. 1980 Sep 30;19(20):4627–4632. doi: 10.1021/bi00561a014. [DOI] [PubMed] [Google Scholar]
  34. Schaeffer H. J., Schwender C. F. Enzyme inhibitors. 26. Bridging hydrophobic and hydrophilic regions on adenosine deaminase with some 9-(2-hydroxy-3-alkyl)adenines. J Med Chem. 1974 Jan;17(1):6–8. doi: 10.1021/jm00247a002. [DOI] [PubMed] [Google Scholar]
  35. Snyderman R., Pike M. C., Kredich N. M. Role of transmethylation reactions in cellular motility and phagocytosis. Mol Immunol. 1980 Feb;17(2):209–218. doi: 10.1016/0161-5890(80)90073-5. [DOI] [PubMed] [Google Scholar]
  36. Van Haastert P. J. Binding of cAMP and adenosine derivatives to Dictyostelium discoideum cells. Relationships of binding, chemotactic, and antagonistic activities. J Biol Chem. 1983 Aug 25;258(16):9643–9648. [PubMed] [Google Scholar]
  37. Van Haastert P. J., Kien E. Binding of cAMP derivatives to Dictyostelium discoideum cells. Activation mechanism of the cell surface cAMP receptor. J Biol Chem. 1983 Aug 25;258(16):9636–9642. [PubMed] [Google Scholar]
  38. Van Haastert P. J., Van der Heijden P. R. Excitation, adaptation, and deadaptation of the cAMP-mediated cGMP response in Dictyostelium discoideum. J Cell Biol. 1983 Feb;96(2):347–353. doi: 10.1083/jcb.96.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Venkatasubramanian K., Hirata F., Gagnon C., Corcoran B. A., O'Dea R. F., Axelrod J., Schiffmann E. Protein methylesterase and leukocyte chemotaxis. Mol Immunol. 1980 Feb;17(2):201–207. doi: 10.1016/0161-5890(80)90072-3. [DOI] [PubMed] [Google Scholar]
  40. van Waarde A. Rapid, transient methylation of four proteins in aggregative amoebae of Dictyostelium discoideum as a response to stimulation with cyclic AMP. FEBS Lett. 1982 Nov 29;149(2):266–270. doi: 10.1016/0014-5793(82)81114-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES