Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Feb;157(2):632–636. doi: 10.1128/jb.157.2.632-636.1984

Pyocin R1 inhibits active transport in Pseudomonas aeruginosa and depolarizes membrane potential.

Y Uratani, T Hoshino
PMCID: PMC215293  PMID: 6420392

Abstract

Pyocin R1, a bacteriocin of Pseudomonas aeruginosa, inhibited active transport of proline in the presence of high concentrations of malate and magnesium salt. Pyocin R1 did not affect the respiration of sensitive cells nor induce cell lysis, but it caused a decrease in the intracellular ATP level. In addition, a passive inflow of [14C]thiocyanate anion, a probe of membrane potential, was induced by pyocin R1, showing a depolarization of the cytoplasmic membrane. It is considered that membrane depolarization is a primary action of pyocin R1.

Full text

PDF
632

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fillingame R. H. The proton-translocating pumps of oxidative phosphorylation. Annu Rev Biochem. 1980;49:1079–1113. doi: 10.1146/annurev.bi.49.070180.005243. [DOI] [PubMed] [Google Scholar]
  2. Gould J. M., Cramer W. A. Studies on the depolarization of the Escherichia coli cell membrane by colicin E1. J Biol Chem. 1977 Aug 10;252(15):5491–5497. [PubMed] [Google Scholar]
  3. Harold F. M. Conservation and transformation of energy by bacterial membranes. Bacteriol Rev. 1972 Jun;36(2):172–230. doi: 10.1128/br.36.2.172-230.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hoshino T., Kageyama M. Sodium-dependent transport of L-leucine in membrane vesicles prepared from Pseudomonas aeruginosa. J Bacteriol. 1979 Jan;137(1):73–81. doi: 10.1128/jb.137.1.73-81.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hsung J. C., Haug A. Membrane potential of Thermoplasma acidophila. FEBS Lett. 1977 Jan 15;73(1):47–50. doi: 10.1016/0014-5793(77)80011-2. [DOI] [PubMed] [Google Scholar]
  6. Iijima M. Mode of action of pyocin R1. J Biochem. 1978 Feb;83(2):395–402. doi: 10.1093/oxfordjournals.jbchem.a131926. [DOI] [PubMed] [Google Scholar]
  7. Ishii S. I., Nishi Y., Egami F. The fine structure of a pyocin. J Mol Biol. 1965 Sep;13(2):428–431. doi: 10.1016/s0022-2836(65)80107-3. [DOI] [PubMed] [Google Scholar]
  8. KAGEYAMA M. STUDIES OF A PYOCIN. I. PHYSICAL AND CHEMICAL PROPERTIES. J Biochem. 1964 Jan;55:49–53. doi: 10.1093/oxfordjournals.jbchem.a127839. [DOI] [PubMed] [Google Scholar]
  9. Kaziro Y., Tanaka M. Studies on the mode of action of pyocin. I. Inhibition of macromolecular synthesis in sensitive cells. J Biochem. 1965 May;57(5):689–695. [PubMed] [Google Scholar]
  10. MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961 Jul 8;191:144–148. doi: 10.1038/191144a0. [DOI] [PubMed] [Google Scholar]
  11. Schein S. J., Kagan B. L., Finkelstein A. Colicin K acts by forming voltage-dependent channels in phospholipid bilayer membranes. Nature. 1978 Nov 9;276(5684):159–163. doi: 10.1038/276159a0. [DOI] [PubMed] [Google Scholar]
  12. Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
  13. Tokuda H., Konisky J. Effect of colicins Ia and E1 on ion permeability of liposomes. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6167–6171. doi: 10.1073/pnas.76.12.6167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tokuda H., Konisky J. Mode of action of colicin Ia: effect of colicin on the Escherichia coli proton electrochemical gradient. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2579–2583. doi: 10.1073/pnas.75.6.2579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Uratani Y., Cramer W. A. Reconstitution of colicin E1 into dimyristoylphosphatidylcholine membrane vesicles. J Biol Chem. 1981 Apr 25;256(8):4017–4023. [PubMed] [Google Scholar]
  16. Uratani Y. Dansyl chloride labeling of Pseudomonas aeruginosa treated with pyocin R1: change in permeability of the cell envelope. J Bacteriol. 1982 Feb;149(2):523–528. doi: 10.1128/jb.149.2.523-528.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Uratani Y., Kageyama M. A fluorescent probe response to the interaction of pyocin R1 with sensitive cells. J Biochem. 1977 Feb;81(2):333–341. doi: 10.1093/oxfordjournals.jbchem.a131463. [DOI] [PubMed] [Google Scholar]
  18. Weiss M. J., Luria S. E. Reduction of membrane potential, an immediate effect of colicin K. Proc Natl Acad Sci U S A. 1978 May;75(5):2483–2487. doi: 10.1073/pnas.75.5.2483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Whooley M. A., McLoughlin A. J. The protonmotive force in Pseudomonas aeruginosa and its relationship to exoprotease production. J Gen Microbiol. 1983 Apr;129(4):989–996. doi: 10.1099/00221287-129-4-989. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES