Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Feb;157(2):673–677. doi: 10.1128/jb.157.2.673-677.1984

Chromosomal location and function of genes affecting Pseudomonas aeruginosa nitrate assimilation.

R M Jeter, S R Sias, J L Ingraham
PMCID: PMC215302  PMID: 6420393

Abstract

Seven known genes control Pseudomonas aeruginosa nitrate assimilation. Three of the genes, designated nas, are required for the synthesis of assimilatory nitrate reductase: nasC encodes a structural component of the enzyme; nasA and nasB encode products that participate in the biosynthesis of the molybdenum cofactor of the enzyme. A fourth gene (nis) is required for the synthesis of assimilatory nitrite reductase. The remaining three genes (ntmA, ntmB, and ntmC) control the assimilation of a number of nitrogen sources. The nas genes and two ntm genes have been located on the chromosome and are well separated from the known nar genes which encode synthesis of dissimilatory nitrate reductase. Our data support the previous conclusion that P. aeruginosa has two distinct nitrate reductase systems, one for the assimilation of nitrate and one for its dissimilation.

Full text

PDF
673

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bussey L. B., Ingraham J. L. A regulatory gene (use) affecting the expression of pyrA and certain other pyrimidine genes. J Bacteriol. 1982 Jul;151(1):144–152. doi: 10.1128/jb.151.1.144-152.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carlson C. A., Ferguson L. P., Ingraham J. L. Properties of dissimilatory nitrate reductase purified from the denitrifier Pseudomonas aeruginosa. J Bacteriol. 1982 Jul;151(1):162–171. doi: 10.1128/jb.151.1.162-171.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cove D. J. Genetic studies of nitrate assimilation in Aspergillus nidulans. Biol Rev Camb Philos Soc. 1979 Aug;54(3):291–327. doi: 10.1111/j.1469-185x.1979.tb01014.x. [DOI] [PubMed] [Google Scholar]
  4. FEWSON C. A., NICHOLAS D. J. Nitrate reductase from Pseudomonas aeruginosa. Biochim Biophys Acta. 1961 May 13;49:335–349. doi: 10.1016/0006-3002(61)90133-0. [DOI] [PubMed] [Google Scholar]
  5. Goldflam M., Rowe J. J. Evidence for gene sharing in the nitrate reduction systems of Pseudomonas aeruginosa. J Bacteriol. 1983 Sep;155(3):1446–1449. doi: 10.1128/jb.155.3.1446-1449.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Haas D., Holloway B. W. R factor variants with enhanced sex factor activity in Pseudomonas aeruginosa. Mol Gen Genet. 1976 Mar 30;144(3):243–251. doi: 10.1007/BF00341722. [DOI] [PubMed] [Google Scholar]
  7. Haas D., Holloway B. W., Schamböck A., Leisinger T. The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet. 1977 Jul 7;154(1):7–22. doi: 10.1007/BF00265571. [DOI] [PubMed] [Google Scholar]
  8. Haas D., Watson J., Krieg R., Leisinger T. Isolation of an Hfr donor of Pseudomonas aeruginosa PAO by insertion of the plasmid RP1 into the tryptophan synthase gene. Mol Gen Genet. 1981;182(2):240–244. doi: 10.1007/BF00269664. [DOI] [PubMed] [Google Scholar]
  9. Holloway B. W., Krishnapillai V., Morgan A. F. Chromosomal genetics of Pseudomonas. Microbiol Rev. 1979 Mar;43(1):73–102. doi: 10.1128/mr.43.1.73-102.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mitidieri E., Affonso O. R. Molybdenum requirement for bacterial xanthine dehydrogenase activity. Biochim Biophys Acta. 1965 Aug 24;105(2):371–373. doi: 10.1016/s0926-6593(65)80161-8. [DOI] [PubMed] [Google Scholar]
  11. Sias S. R., Ingraham J. L. Isolation and analysis of mutants of Pseudomonas aeruginosa unable to assimilate nitrate. Arch Microbiol. 1979 Sep;122(3):263–270. doi: 10.1007/BF00411289. [DOI] [PubMed] [Google Scholar]
  12. Sias S. R., Stouthamer A. H., Ingraham J. L. The assimilatory and dissimilatory nitrate reductases of Pseudomonas aeruginosa are encoded by different genes. J Gen Microbiol. 1980 May;118(1):229–234. doi: 10.1099/00221287-118-1-229. [DOI] [PubMed] [Google Scholar]
  13. Van Hartingsveldt J., Marinus M. G., Stouthamer A. H. Mutants of Pseudomonas aeruginosa bblocked in nitrate or nitrite dissimilation. Genetics. 1971 Apr;67(4):469–482. doi: 10.1093/genetics/67.4.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vogels G. D., Van der Drift C. Degradation of purines and pyrimidines by microorganisms. Bacteriol Rev. 1976 Jun;40(2):403–468. doi: 10.1128/br.40.2.403-468.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Watson J. M., Holloway B. W. Chromosome mapping in Pseudomonas aeruginosa PAT. J Bacteriol. 1978 Mar;133(3):1113–1125. doi: 10.1128/jb.133.3.1113-1125.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. van Hartingsveldt J., Stouthamer A. H. Mapping and characerization of mutants of Pseudomonas aeruginosa affected in nitrate respiration in aerobic or anaerobic growth. J Gen Microbiol. 1973 Jan;74(1):97–106. doi: 10.1099/00221287-74-1-97. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES