Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Feb;157(2):681–683. doi: 10.1128/jb.157.2.681-683.1984

Thioredoxins and the redox modulation of glucose-6-phosphate dehydrogenase in Anabaena sp. strain PCC 7120 vegetative cells and heterocysts.

J Udvardy, G Borbely, A Juhåsz, G L Farkas
PMCID: PMC215304  PMID: 6420395

Abstract

Glucose-6-phosphate dehydrogenase (G6PDH) was isolated from heterocysts and vegetative cells of Anabaena sp. strain PCC 7120. Both enzyme preparations proved to be more active in their oxidized than in their reduced forms. At least one protein with thioredoxin activity was found in Anabaena sp. which, if reduced with dithiothreitol, deactivated the G6PDH preparations. The deactivated heterocyst G6PDH could be reactivated neither by O2 nor by oxidized thioredoxin. Reactivation of the enzyme was, however, achieved by oxidized glutathione or H2O2. The active form of Anabaena G6PDH was readily deactivated by heterologous thioredoxin(s). The Anabaena thioredoxin(s) modulated heterologous enzymes.

Full text

PDF
681

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradley S., Carr N. G. Heterocyst and nitrogenase development in Anabaena cylindrica. J Gen Microbiol. 1976 Sep;96(1):175–184. doi: 10.1099/00221287-96-1-175. [DOI] [PubMed] [Google Scholar]
  2. Cséke C., Balogh A., Farkas G. L. Redox modulation of glucose-6-P dehydrogenase in Anacystis nidulans and its 'uncoupling' by phage infection. FEBS Lett. 1981 Apr 6;126(1):85–88. doi: 10.1016/0014-5793(81)81039-3. [DOI] [PubMed] [Google Scholar]
  3. Holmgren A., Fagerstedt M. The in vivo distribution of oxidized and reduced thioredoxin in Escherichia coli. J Biol Chem. 1982 Jun 25;257(12):6926–6930. [PubMed] [Google Scholar]
  4. Schaeffer F., Stanier R. Y. Glucose-6-phosphate dehydrogenase of Anabaena sp. Kinetic and molecular properties. Arch Microbiol. 1978 Jan 23;116(1):9–19. doi: 10.1007/BF00408728. [DOI] [PubMed] [Google Scholar]
  5. Scheibe R., Anderson L. E. Dark modulation of NADP-dependent malate dehydrogenase and glucose-6-phosphate dehydrogenase in the chloroplast. Biochim Biophys Acta. 1981 Jun 12;636(1):58–64. doi: 10.1016/0005-2728(81)90075-x. [DOI] [PubMed] [Google Scholar]
  6. Schürmann P., Wolosiuk R. A. Studies on the regulatory properties of chloroplast fructose-1,6-bisphosphatase. Biochim Biophys Acta. 1978 Jan 12;522(1):130–138. doi: 10.1016/0005-2744(78)90329-7. [DOI] [PubMed] [Google Scholar]
  7. Soulié J. M., Buc J., Meunier J. C., Pradel J., Ricard J. Molecular properties of chloroplastic thioredoxin f and the photoregulation of the activity of fructose 1,6-bisphosphatase. Eur J Biochem. 1981 Oct;119(3):497–502. doi: 10.1111/j.1432-1033.1981.tb05635.x. [DOI] [PubMed] [Google Scholar]
  8. Stanier R. Y., Cohen-Bazire G. Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol. 1977;31:225–274. doi: 10.1146/annurev.mi.31.100177.001301. [DOI] [PubMed] [Google Scholar]
  9. Stewart W. D. Some aspects of structure and function in N2-fixing cyanobacteria. Annu Rev Microbiol. 1980;34:497–536. doi: 10.1146/annurev.mi.34.100180.002433. [DOI] [PubMed] [Google Scholar]
  10. Udvardy J., Godeh M. M., Farkas G. L. Regulatory properties of a fructose 1,6-bisphosphatase from the cyanobacterium Anacystis nidulans. J Bacteriol. 1982 Jul;151(1):203–208. doi: 10.1128/jb.151.1.203-208.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Udvardy J., Juhász A., Farkas G. L. Interaction between hysteretic regulation and redox modulation of glucose-6-phosphate dehydrogenase from Anacystis nidulans. FEBS Lett. 1983 Feb 7;152(1):97–100. doi: 10.1016/0014-5793(83)80490-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES