Abstract
A positive selection method, D-aspartic acid beta-hydroxamate resistance, was used to isolate Saccharomyces cerevisiae strains lacking the ability to synthesize asparaginase II. Of 100 such mutant strains, 93 exhibited mutations which were allelic with asp3, a previously characterized mutation. The other seven strains carried a new mutation, asp6. The asp6 mutation segregated 2:2 in asp6 X wild-type crosses and assorted from the asp3 mutation in asp6 X asp3 crosses. All seven asp6 mutant isolates reverted at a relatively high frequency, whereas the asp3 mutant isolates did not revert under the same conditions. Various independent asp3 isolates were mated to give heteroallelic diploids, which when sporulated and spread on D-asparagine medium yielded no recombinant strains.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bostian K. A., Lemire J. M., Cannon L. E., Halvorson H. O. In vitro synthesis of repressible yeast acid phosphatase: identification of multiple mRNAs and products. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4504–4508. doi: 10.1073/pnas.77.8.4504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bostian K. A., Lemire J. M., Halvorson H. O. Synthesis of repressible acid phosphatase in Saccharomyces cerevisiae under conditions of enzyme instability. Mol Cell Biol. 1982 Jan;2(1):1–10. doi: 10.1128/mcb.2.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlson M., Botstein D. Organization of the SUC gene family in Saccharomyces. Mol Cell Biol. 1983 Mar;3(3):351–359. doi: 10.1128/mcb.3.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlson M., Taussig R., Kustu S., Botstein D. The secreted form of invertase in Saccharomyces cerevisiae is synthesized from mRNA encoding a signal sequence. Mol Cell Biol. 1983 Mar;3(3):439–447. doi: 10.1128/mcb.3.3.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunlop P. C., Meyer G. M., Ban D., Roon R. J. Characterization of two forms of asparaginase in Saccharomyces cerevisiae. J Biol Chem. 1978 Feb 25;253(4):1297–1304. [PubMed] [Google Scholar]
- Dunlop P. C., Meyer G. M., Roon R. J. Nitrogen catabolite repression of asparaginase II in Saccharomyces cerevisiae. J Bacteriol. 1980 Jul;143(1):422–426. doi: 10.1128/jb.143.1.422-426.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunlop P. C., Meyer G. M., Roon R. J. Reactions of asparaginase II of Saccharomyces cerevisiae. A mechanistic analysis of hydrolysis and hydroxylaminolysis. J Biol Chem. 1980 Feb 25;255(4):1542–1546. [PubMed] [Google Scholar]
- Dunlop P. C., Roon R. J., Even H. L. Utilization of D-asparagine by Saccharomyces cerevisiae. J Bacteriol. 1976 Mar;125(3):999–1004. doi: 10.1128/jb.125.3.999-1004.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunlop P. C., Roon R. J. L-Asparaginase of Saccharomyces cerevisiae: an extracellular Enzyme. J Bacteriol. 1975 Jun;122(3):1017–1024. doi: 10.1128/jb.122.3.1017-1024.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esposito M. S. X-ray and meiotic fine structure mapping of the adenine-8 locus in Saccharomyces cerevisiae. Genetics. 1968 Apr;58(4):507–527. doi: 10.1093/genetics/58.4.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones G. E. Genetic and physiological relationships between L-asparaginase I and asparaginase II in Saccharomyces cerevisiae. J Bacteriol. 1977 Apr;130(1):128–130. doi: 10.1128/jb.130.1.128-130.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones G. E. Genetics of expression of asparaginase II activity in Saccharomyces cerevisiae. J Bacteriol. 1977 Feb;129(2):1165–1167. doi: 10.1128/jb.129.2.1165-1167.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones G. E., Mortimer R. K. Biochemical properties of yeast L-asparaginase. Biochem Genet. 1973 Jun;9(2):131–146. doi: 10.1007/BF00487443. [DOI] [PubMed] [Google Scholar]
- Jones G. E., Mortimer R. K. L-asparaginase-deficient mutants of yeast. Science. 1970 Jan 9;167(3915):181–182. doi: 10.1126/science.167.3915.181. [DOI] [PubMed] [Google Scholar]
- Kang L., Keeler M. L., Dunlop P. C., Roon R. J. Nitrogen catabolite repression in a glutamate auxotroph of Saccharomyces cerevisiae. J Bacteriol. 1982 Jul;151(1):29–35. doi: 10.1128/jb.151.1.29-35.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim K. W., Roon R. J. Asparaginase II of Saccharomyces cerevisiae: comparison of enzyme stability in vivo and in vitro. Biochemistry. 1983 May 24;22(11):2704–2707. doi: 10.1021/bi00280a018. [DOI] [PubMed] [Google Scholar]
- Kim K. W., Roon R. J. Transport and metabolic effects of alpha-aminoisobutyric acid in Saccharomyces cerevisiae. Biochim Biophys Acta. 1982 Nov 24;719(2):356–362. doi: 10.1016/0304-4165(82)90110-6. [DOI] [PubMed] [Google Scholar]
- Needleman R. B., Michels C. Repeated family of genes controlling maltose fermentation in Saccharomyces carlsbergensis. Mol Cell Biol. 1983 May;3(5):796–802. doi: 10.1128/mcb.3.5.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pauling K. D., Jones G. E. Asparaginase II of Saccharomyces cerevisiae: inactivation during the transition to stationary phase. Biochim Biophys Acta. 1980 Dec 4;616(2):271–282. doi: 10.1016/0005-2744(80)90144-8. [DOI] [PubMed] [Google Scholar]
- Rogers D. T., Lemire J. M., Bostian K. A. Acid phosphatase polypeptides in Saccharomyces cerevisiae are encoded by a differentially regulated multigene family. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2157–2161. doi: 10.1073/pnas.79.7.2157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roon R. J., Even H. L., Dunlop P., Larimore F. L. Methylamine and ammonia transport in Saccharomyces cerevisiae. J Bacteriol. 1975 May;122(2):502–509. doi: 10.1128/jb.122.2.502-509.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roon R. J., Murdoch M., Kunze B., Dunlop P. C. Derepression of asparaginase II during exponential growth of Saccharomyces cerevisiae on ammonium ion. Arch Biochem Biophys. 1982 Nov;219(1):101–109. doi: 10.1016/0003-9861(82)90138-2. [DOI] [PubMed] [Google Scholar]
- Rytka J. Positive selection of general amino acid permease mutants in Saccharomyces cerevisiae. J Bacteriol. 1975 Feb;121(2):562–570. doi: 10.1128/jb.121.2.562-570.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thill G. P., Kramer R. A., Turner K. J., Bostian K. A. Comparative analysis of the 5'-end regions of two repressible acid phosphatase genes in Saccharomyces cerevisiae. Mol Cell Biol. 1983 Apr;3(4):570–579. doi: 10.1128/mcb.3.4.570. [DOI] [PMC free article] [PubMed] [Google Scholar]