Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Apr;158(1):354–356. doi: 10.1128/jb.158.1.354-356.1984

Facile and gentle method for quantitative lysis of Escherichia coli and Salmonella typhimurium.

S Crabtree, J E Cronan Jr
PMCID: PMC215424  PMID: 6232260

Abstract

Garrett et al. (Mol. Gen. Genet. 182:326-331, 1981) constructed strains of Escherichia coli harboring derivatives of plasmid pBR322 that carry the lysis genes (S, R, and Rz) of phage lambda. The plasmid construction placed the genes under control of the lactose operon operator-promotor (and thus of lac repressor). Induction of E. coli strains carrying these plasmids resulted in rapid lysis of the culture unless the S gene was defective, in which case the cells grew normally. A freeze-thaw treatment of induced cells carrying an S- plasmid gave quantitative lysis of either E. coli or Salmonella typhimurium cells under exceptionally gentle conditions. The method was equally effective on exponential phase cells and stationary phase cells and was readily extended to a large number of independent cultures.

Full text

PDF
354

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman E., Altman R. K., Garrett J. M., Grimaila R. J., Young R. S gene product: identification and membrane localization of a lysis control protein. J Bacteriol. 1983 Sep;155(3):1130–1137. doi: 10.1128/jb.155.3.1130-1137.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bulawa C. E., Ganong B. R., Sparrow C. P., Raetz C. R. Enzymatic sorting of bacterial colonies on filter paper replicas: detection of labile activities. J Bacteriol. 1981 Oct;148(1):391–393. doi: 10.1128/jb.148.1.391-393.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang Y. Y., Cronan J. E., Jr Mapping nonselectable genes of Escherichia coli by using transposon Tn10: location of a gene affecting pyruvate oxidase. J Bacteriol. 1982 Sep;151(3):1279–1289. doi: 10.1128/jb.151.3.1279-1289.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Csonka L. N., Howe M. M., Ingraham J. L., Pierson L. S., 3rd, Turnbough C. L., Jr Infection of Salmonella typhimurium with coliphage Mu d1 (Apr lac): construction of pyr::lac gene fusions. J Bacteriol. 1981 Jan;145(1):299–305. doi: 10.1128/jb.145.1.299-305.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davis T. N., Cronan J. E., Jr Nonsense mutants of the lipid-containing bacteriophage PR4. Virology. 1983 Apr 30;126(2):600–613. doi: 10.1016/s0042-6822(83)80016-6. [DOI] [PubMed] [Google Scholar]
  6. Fraenkel D. G., Levisohn S. R. Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase. J Bacteriol. 1967 May;93(5):1571–1578. doi: 10.1128/jb.93.5.1571-1578.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garrett J. M., Young R. Lethal action of bacteriophage lambda S gene. J Virol. 1982 Dec;44(3):886–892. doi: 10.1128/jvi.44.3.886-892.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garrett J., Fusselman R., Hise J., Chiou L., Smith-Grillo D., Schulz J., Young R. Cell lysis by induction of cloned lambda lysis genes. Mol Gen Genet. 1981;182(2):326–331. doi: 10.1007/BF00269678. [DOI] [PubMed] [Google Scholar]
  9. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  10. Heppel L. A. Selective release of enzymes from bacteria. Science. 1967 Jun 16;156(3781):1451–1455. doi: 10.1126/science.156.3781.1451. [DOI] [PubMed] [Google Scholar]
  11. Nunn W. D., Cronan J. E., Jr Unsaturated fatty acid synthesis is not required for induction of lactose transport in Escherichia coli. J Biol Chem. 1974 Feb 10;249(3):724–731. [PubMed] [Google Scholar]
  12. Oliver C. N., Stadtman E. R. A proteolytic artifact associated with the lysis of bacteria by egg white lysozyme. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2156–2160. doi: 10.1073/pnas.80.8.2156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Patterson D., Weinstein M., Nixon R., Gillespie D. Interaction of ribosomes and the cell envelope of Escherichia coli mediated by lysozyme. J Bacteriol. 1970 Feb;101(2):584–591. doi: 10.1128/jb.101.2.584-591.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Putnam S. L., Koch A. L. Complications in the simplest cellular enzyme assay: lysis of Escherichia coli for the assay of beta-galactosidase. Anal Biochem. 1975 Feb;63(2):350–360. doi: 10.1016/0003-2697(75)90357-7. [DOI] [PubMed] [Google Scholar]
  15. Reader R. W., Siminovitch L. Lysis defective mutants of bacteriophage lambda: on the role of the S function in lysis. Virology. 1971 Mar;43(3):623–637. doi: 10.1016/0042-6822(71)90287-x. [DOI] [PubMed] [Google Scholar]
  16. Roberts T. M., Lauer G. D. Maximizing gene expression on a plasmid using recombination in vitro. Methods Enzymol. 1979;68:473–482. doi: 10.1016/0076-6879(79)68036-9. [DOI] [PubMed] [Google Scholar]
  17. Tabor H., Tabor C. W., Hafner E. W. Convenient method for detecting 14CO2 in multiple samples: application to rapid screening for mutants. J Bacteriol. 1976 Oct;128(1):485–486. doi: 10.1128/jb.128.1.485-486.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wilson D. B. Effect of the lambda S gene product on properties of the Escherichia coli inner membrane. J Bacteriol. 1982 Sep;151(3):1403–1410. doi: 10.1128/jb.151.3.1403-1410.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wilson D. B., Okabe A. A second function of the S gene of bacteriophage lambda. J Bacteriol. 1982 Dec;152(3):1091–1095. doi: 10.1128/jb.152.3.1091-1095.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Winston F., Botstein D., Miller J. H. Characterization of amber and ochre suppressors in Salmonella typhimurium. J Bacteriol. 1979 Jan;137(1):433–439. doi: 10.1128/jb.137.1.433-439.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Witholt B., Boekhout M., Brock M., Kingma J., Heerikhuizen H. V., Leij L. D. An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli. Anal Biochem. 1976 Jul;74(1):160–170. doi: 10.1016/0003-2697(76)90320-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES