Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 May;158(2):447–454. doi: 10.1128/jb.158.2.447-454.1984

Regulation of protoxin synthesis in Bacillus thuringiensis.

S A Minnich, A I Aronson
PMCID: PMC215448  PMID: 6725205

Abstract

A derivative of Bacillus thuringiensis subsp. kurstaki (HD-1) formed parasporal inclusions at 25 degrees C, but not at 32 degrees C. This strain differed from the parent only in the loss of a 110-megadalton (Md) plasmid, but plasmid and chromosomal copies of protoxin genes were present in both strains. On the basis of temperature shift experiments, the sensitive period appeared to be during midexponential growth, long before the time of protoxin synthesis at 3 to 4 h after the end of exponential growth. The conditional phenotype could be transferred by cell mating to naturally acrystalliferous Bacillus cereus. In all such cases, a 29-Md protoxin -encoding plasmid was transferred, but this plasmid alone was barely sufficient for protoxin synthesis. Protoxin production increased to detectable levels, but well below those of the parental donor strain, by simultaneous transfer of a 44-Md protoxin -encoding plasmid. Transfer of a 5-Md plasmid with the two larger protoxin -coding plasmids resulted in a protoxin synthesis level approaching that of the donor strain. A role for some of the cryptic plasmids of kurstaki in parasporal body formation was implied. In contrast, a closely related B. thuringiensis strain, HD73 , produced crystals at both 25 and 32 degrees C even when the capacity was transferred on a 50-Md plasmid to B. cereus. The amount of protoxin produced in these B. cereus transcipients , however, was somewhat less than that produced in the parental strain HD73 , implying that catabolic differences, gene dosage, or the presence of a chromosomal gene (or a combination of these) may be necessary for maximum production. A regulatory component of the 29-Md plasmid appeared to be trans-acting and dominant since B. cereus transcipients containing the 29-Md plasmid from kurstaki and the 50-Md plasmid from HD73 produced more protoxin at 25 degrees C than at 30 degrees C. Similar results were obtained when protoxin synthetic capacity was transferred from B. thuringiensis subsp. israelensis to the conditional B. thuringiensis subsp. kurstaki strain.

Full text

PDF
447

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronson A. I., Angelo N., Holt S. C. Regulation of extracellular protease production in Bacillus cereus T: characterization of mutants producing altered amounts of protease. J Bacteriol. 1971 Jun;106(3):1016–1025. doi: 10.1128/jb.106.3.1016-1025.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aronson A. I., Fitz-James P. Structure and morphogenesis of the bacterial spore coat. Bacteriol Rev. 1976 Jun;40(2):360–402. doi: 10.1128/br.40.2.360-402.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aronson A. I., Tyrell D. J., Fitz-James P. C., Bulla L. A., Jr Relationship of the syntheses of spore coat protein and parasporal crystal protein in Bacillus thuringiensis. J Bacteriol. 1982 Jul;151(1):399–410. doi: 10.1128/jb.151.1.399-410.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bulla L. A., Jr, Kramer K. J., Cox D. J., Jones B. L., Davidson L. I., Lookhart G. L. Purification and characterization of the entomocidal protoxin of Bacillus thuringiensis. J Biol Chem. 1981 Mar 25;256(6):3000–3004. [PubMed] [Google Scholar]
  5. Charles J. F., de Barjac H. Sporulation et cristallogenèse de Bacillus thuringiensis var. Israelensis en microscopie électronique. Ann Microbiol (Paris) 1982 May-Jun;133(3):425–442. [PubMed] [Google Scholar]
  6. Faust R. M., Abe K., Held G. A., Iizuka T., Bulla L. A., Meyers C. L. Evidence for plasmid-associated crystal toxin production in Bacillus thuringiensis subsp. israelensis. Plasmid. 1983 Jan;9(1):98–103. doi: 10.1016/0147-619x(83)90034-3. [DOI] [PubMed] [Google Scholar]
  7. González J. M., Jr, Brown B. J., Carlton B. C. Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6951–6955. doi: 10.1073/pnas.79.22.6951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. González J. M., Jr, Dulmage H. T., Carlton B. C. Correlation between specific plasmids and delta-endotoxin production in Bacillus thuringiensis. Plasmid. 1981 May;5(3):352–365. doi: 10.1016/0147-619x(81)90010-x. [DOI] [PubMed] [Google Scholar]
  9. Held G. A., Bulla L. A., Jr, Ferrari E., Hoch J., Aronson A. I., Minnich S. A. Cloning and localization of the lepidopteran protoxin gene of Bacillus thuringiensis subsp. kurstaki. Proc Natl Acad Sci U S A. 1982 Oct;79(19):6065–6069. doi: 10.1073/pnas.79.19.6065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ito J., Spizizen J. Increased rate of asporogenous mutations following treatment of Bacillus subtilis spores with ethyl methanesulfonate. Mutat Res. 1971 Sep;13(1):93–96. doi: 10.1016/0027-5107(71)90130-8. [DOI] [PubMed] [Google Scholar]
  11. Kronstad J. W., Schnepf H. E., Whiteley H. R. Diversity of locations for Bacillus thuringiensis crystal protein genes. J Bacteriol. 1983 Apr;154(1):419–428. doi: 10.1128/jb.154.1.419-428.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MONRO R. E. Protein turnover and the formation of protein inclusions during sporulation of Bacillus thuringiensis. Biochem J. 1961 Nov;81:225–232. doi: 10.1042/bj0810225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nickerson tkw, bulla L. A., Jr Lipid metabolism during bacterial growth, sporulation, and germination: an obligate nutritional requirement in Bacillus thuringiensis for compounds that stimulate fatty acid synthesis. J Bacteriol. 1975 Aug;123(2):598–603. doi: 10.1128/jb.123.2.598-603.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Somerville H. J. Formation of the parasporal inclusion of Bacillus thuringiensis. Eur J Biochem. 1971 Jan;18(2):226–237. doi: 10.1111/j.1432-1033.1971.tb01235.x. [DOI] [PubMed] [Google Scholar]
  15. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vanderbilt J. N., Anderson J. N. Monoclonal antibodies to tissue-specific chromatin proteins. J Biol Chem. 1983 Jun 25;258(12):7751–7756. [PubMed] [Google Scholar]
  17. Wong H. C., Schnepf H. E., Whiteley H. R. Transcriptional and translational start sites for the Bacillus thuringiensis crystal protein gene. J Biol Chem. 1983 Feb 10;258(3):1960–1967. [PubMed] [Google Scholar]
  18. YOUNG I. E., FITZ-JAMES P. C. Chemical and morphological studies of bacterial spore formation. II. Spore and parasporal protein formation in Bacillus cereus var. alesti. J Biophys Biochem Cytol. 1959 Dec;6:483–498. doi: 10.1083/jcb.6.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yamamoto T., McLaughlin R. E. Isolation of a protein from the parasporal crystal of Bacillus thuringiensis var. Kurstaki toxic to the mosquito larva, Aedes taeniorhynchus. Biochem Biophys Res Commun. 1981 Nov 30;103(2):414–421. doi: 10.1016/0006-291x(81)90468-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES