Abstract
The cellular content of all 20 aminoacyl-tRNA species was determined in small cultures of Escherichia coli by labeling cells with 3H-amino acids and extraction of 3H-amino acid-labeled nucleic acid by standard procedures. Of 3H-amino acid-labeled material, 25 to 90% was identified as 3H-aminoacyl-tRNA by the following criteria: sensitivity to base hydrolysis with expected kinetics; association of 3H counts released by base treatment of the 3H-amino acid-labeled nucleic acid with amino acid standards upon paper chromatography of the hydrolysate; and changes in the amount of 3H-amino acid-labeled nucleic acid recovered from cells as a function of time. Individual aminoacyl-tRNA content was determined with as few as 8 X 10(7) to 4 X 10(8) E. coli cells. Although the total number of aminoacyl-tRNA molecules per cell varied only by 10 to 20% among various strains of E. coli, some individual aminoacyl-tRNA families varied two- to threefold among strains. For a given amino acid, the number of aminoacyl-tRNA molecules per cell in E. coli strain K38 growing with a doubling time of 60 min varied from 730 (glutamyl-tRNA) to 7,910 (valyl-tRNA) with a mean value of 3,200. The total number of aminoacyl-tRNA molecules per cell (6.4 X 10(4)) in E. coli K38 was 5.5-fold higher than the number of ribosomes and was equal to 84% of the amount of elongation factor Tu molecules per cell. The ratio of aminoacyl-tRNA to synthetase for 10 amino acids varied from about 1 to 15 with a mean value of 4.7. The turnover of individual aminoacyl-tRNA families in E. coli cells was estimated to be in the range of 1.7 to 8.1 s-1 with a mean value of 3.7 s-1. An estimate of minimum in vivo molecular activity of aminoacyl-tRNA synthetases gives values of 2 to 48 s-1 for individual enzymes.
Full text
PDF![769](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91e6/215508/95285e147fd9/jbacter00235-0011.png)
![770](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91e6/215508/453c9ccf10c9/jbacter00235-0012.png)
![771](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91e6/215508/7521a957026e/jbacter00235-0013.png)
![772](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91e6/215508/3260691c7395/jbacter00235-0014.png)
![773](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91e6/215508/c1ad0c09ddc5/jbacter00235-0015.png)
![774](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91e6/215508/662401f4254f/jbacter00235-0016.png)
![775](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91e6/215508/18946c3dbb69/jbacter00235-0017.png)
![776](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91e6/215508/0050e9264951/jbacter00235-0018.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. E., Raines P. L., Regen D. M. Regulatory significance of transfer RNA charging levels. I. Measurements of charging levels in livers of chow-fed rats, fasting rats, and rats fed balanced or imbalanced mixtures of amino acids. Biochim Biophys Acta. 1969 Oct 22;190(2):323–336. doi: 10.1016/0005-2787(69)90083-5. [DOI] [PubMed] [Google Scholar]
- Dennis P. P., Bremer H. Macromolecular composition during steady-state growth of Escherichia coli B-r. J Bacteriol. 1974 Jul;119(1):270–281. doi: 10.1128/jb.119.1.270-281.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deutch C. E., Scarpulla R. C., Soffer R. L. Posttranslational NH2-terminal aminoacylation. Curr Top Cell Regul. 1978;13:1–28. doi: 10.1016/b978-0-12-152813-3.50005-7. [DOI] [PubMed] [Google Scholar]
- Doolittle W. F., Yanofsky C. Mutants of Escherichia coli with an altered tryptophanyl-transfer ribonucleic acid synthetase. J Bacteriol. 1968 Apr;95(4):1283–1294. doi: 10.1128/jb.95.4.1283-1294.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Folk W. R., Berg P. Characterization of altered forms of glycyl transfer ribonucleic acid synthetase and the effects of such alterations on aminoacyl transfer ribonucleic acid synthesis in vivo. J Bacteriol. 1970 Apr;102(1):204–212. doi: 10.1128/jb.102.1.204-212.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fradin A., Gruhl H., Feldmann H. Mapping of yeast tRNAs by two-dimensional electrophoresis on polyacrylamide gels. FEBS Lett. 1975 Feb 1;50(2):185–189. doi: 10.1016/0014-5793(75)80485-6. [DOI] [PubMed] [Google Scholar]
- Furano A. V. Content of elongation factor Tu in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4780–4784. doi: 10.1073/pnas.72.12.4780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman E. Effect of rate-limiting elongation on bacteriophage MS2 RNA-directed protein synthesis in extracts of Escherichia coli. J Mol Biol. 1982 Jul 15;158(4):619–636. doi: 10.1016/0022-2836(82)90252-2. [DOI] [PubMed] [Google Scholar]
- Hentzen D., Mandel P., Garel J. P. Relation between aminoacyl-tRNA stability and the fixed amino acid. Biochim Biophys Acta. 1972 Oct 11;281(2):228–232. doi: 10.1016/0005-2787(72)90174-8. [DOI] [PubMed] [Google Scholar]
- Hoben P., Royal N., Cheung A., Yamao F., Biemann K., Söll D. Escherichia coli glutaminyl-tRNA synthetase. II. Characterization of the glnS gene product. J Biol Chem. 1982 Oct 10;257(19):11644–11650. [PubMed] [Google Scholar]
- Kasai H., Kuchino Y., Nihei K., Nishimura S. Distribution of the modified nucleoside Q and its derivatives in animal and plant transfer RNA's. Nucleic Acids Res. 1975 Oct;2(10):1931–1939. doi: 10.1093/nar/2.10.1931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koontz S. W., Jakubowski H., Goldman E. Control of RNA and protein synthesis by the concentration of Trp-tRNATrp in Escherichia coli infected with bacteriophage MS2. J Mol Biol. 1983 Aug 25;168(4):747–763. doi: 10.1016/s0022-2836(83)80073-4. [DOI] [PubMed] [Google Scholar]
- Loftfield R. B. The mechanism of aminoacylation of transfer RNA. Prog Nucleic Acid Res Mol Biol. 1972;12:87–128. doi: 10.1016/s0079-6603(08)60660-1. [DOI] [PubMed] [Google Scholar]
- Morgan S. D., Söll D. Regulation of the biosynthesis of aminoacid: tRNA ligases and of tRNA. Prog Nucleic Acid Res Mol Biol. 1978;21:181–207. doi: 10.1016/s0079-6603(08)60270-6. [DOI] [PubMed] [Google Scholar]
- Morgan S., Körner A., Low K. B., Söll D. Regulation of biosynthesis of aminoacyl-tRNA synthetases and of tRNA in Escherichia coli. I. Isolation and characterization of a mutant with elevated levels of tRNAGln 1. J Mol Biol. 1977 Dec 25;117(4):1013–1031. doi: 10.1016/s0022-2836(77)80010-7. [DOI] [PubMed] [Google Scholar]
- Neidhardt F. C., Bloch P. L., Pedersen S., Reeh S. Chemical measurement of steady-state levels of ten aminoacyl-transfer ribonucleic acid synthetases in Escherichia coli. J Bacteriol. 1977 Jan;129(1):378–387. doi: 10.1128/jb.129.1.378-387.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raunio R., Rosenqvist H. Amino acid pool of Escherichia coli during the different phases of growth. Acta Chem Scand. 1970;24(8):2737–2744. doi: 10.3891/acta.chem.scand.24-2737. [DOI] [PubMed] [Google Scholar]
- Rizzino A. A., Freundlich M. Estimation of in vivo aminoacylation by periodate oxidation: tRNA alterations and iodate inhibition. Anal Biochem. 1975 Jun;66(2):446–449. doi: 10.1016/0003-2697(75)90612-0. [DOI] [PubMed] [Google Scholar]
- Skjold A. C., Juarez H., Hedgcoth C. Relationships among deoxyribonucleic acid, ribonucleic acid, and specific transfer ribonucleic acids in Escherichia coli 15T - at various growth rates. J Bacteriol. 1973 Jul;115(1):177–187. doi: 10.1128/jb.115.1.177-187.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson L. H., Harkins J. L., Stanners C. P. A mammalian cell mutant with a temperature-sensitive leucyl-transfer RNA synthetase. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3094–3098. doi: 10.1073/pnas.70.11.3094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson L. H., Lofgren D. J., Adair G. M. CHO cell mutants for arginyl-, asparagyl-, glutaminyl-, histidyl- and methionyl-transfer RNA synthetases: identification and initial characterization. Cell. 1977 May;11(1):157–168. doi: 10.1016/0092-8674(77)90326-9. [DOI] [PubMed] [Google Scholar]
- Vaughan M. H., Hansen B. S. Control of initiation of protein synthesis in human cells. Evidence for a role of uncharged transfer ribonucleic acid. J Biol Chem. 1973 Oct 25;248(20):7087–7096. [PubMed] [Google Scholar]
- Wallyn C. S., Vidrich A., Airhart J., Khairallah E. A. Analysis of the specific radioactivity of valine isolated from aminoacyl-transfer ribonucleic acid of rat liver. Biochem J. 1974 Jun;140(3):545–548. doi: 10.1042/bj1400545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanofsky C. Attenuation in the control of expression of bacterial operons. Nature. 1981 Feb 26;289(5800):751–758. doi: 10.1038/289751a0. [DOI] [PubMed] [Google Scholar]
- Yegian C. D., Stent G. S. Differential aminoacylation of three species of isoleucine transfer RNA from Escherichia coli. J Mol Biol. 1969 Jan 14;39(1):59–71. doi: 10.1016/0022-2836(69)90333-7. [DOI] [PubMed] [Google Scholar]
- Yegian C. D., Stent G. S., Martin E. M. Intracellular condition of Escherichia coli transfer RNA. Proc Natl Acad Sci U S A. 1966 Apr;55(4):839–846. doi: 10.1073/pnas.55.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]