Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Jun;158(3):826–831. doi: 10.1128/jb.158.3.826-831.1984

Escherichia coli K-12 mutation that inactivates biodegradative threonine dehydratase by transposon Tn5 insertion.

T J Goss, P Datta
PMCID: PMC215516  PMID: 6327641

Abstract

From a collection of kanamycin-resistant mutants of Escherichia coli K-12 isolated by transposon Tn5 mutagenesis, we have identified a mutant that lacks functional biodegradative threonine dehydratase (EC 4.2.1.16) by direct enzyme assay and by the loss of cross-reacting material with affinity-purified antibodies against the purified enzyme. Aerobic and anaerobic growth of this strain on various carbon sources failed to reveal a phenotype. Evidence for the insertional inactivation of threonine dehydratase by Tn5 was obtained by cloning the DNA segments flanking the Tn5 insertion site into pBR322 and hybridizing the cloned DNA to a synthetic oligodeoxynucleotide probe complementary to the DNA segment coding for a unique hexapeptide at the amino terminus end of the enzyme; the region of homology to the synthetic cDNA sequence appears to be located within about 500 nucleotides from one end of Tn5. Genetic analysis with the transposon element that caused insertional inactivation located the tdc gene at min 67 on the E. coli chromosome.

Full text

PDF
826

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. J., Quay S. C., Oxender D. L. Mapping of two loci affecting the regulation of branched-chain amino acid transport in Escherichia coli K-12. J Bacteriol. 1976 Apr;126(1):80–90. doi: 10.1128/jb.126.1.80-90.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhadra R., Datta P. Allosteric inhibition and catabolite inactivation of purified biodegradative threonine dehydratase of Salmonella typhimurium. Biochemistry. 1978 May 2;17(9):1691–1699. doi: 10.1021/bi00602a017. [DOI] [PubMed] [Google Scholar]
  3. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dalbadie-McFarland G., Cohen L. W., Riggs A. D., Morin C., Itakura K., Richards J. H. Oligonucleotide-directed mutagenesis as a general and powerful method for studies of protein function. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6409–6413. doi: 10.1073/pnas.79.21.6409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dunne C. P., Wood W. A. L-threonine dehydrase as a model of allosteric control involving ligand-induced oligomerization. Curr Top Cell Regul. 1975;9:65–101. doi: 10.1016/b978-0-12-152809-6.50010-x. [DOI] [PubMed] [Google Scholar]
  6. Egan R. M., Phillips A. T. Requirements for induction of the biodegradative threonine dehydratase in Escherichia coli. J Bacteriol. 1977 Nov;132(2):370–376. doi: 10.1128/jb.132.2.370-376.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feldman D. A., Datta P. Catabolite inactivation of biodegradative threonine dehydratase of Escherichia coli. Biochemistry. 1975 Apr 22;14(8):1760–1767. doi: 10.1021/bi00679a031. [DOI] [PubMed] [Google Scholar]
  8. Goldstein I. J., So L. L. Protein-carbonhydrate interaction. 3. Agar gel-diffusion studies on the interaction of Concanavalin A, a lectin isolated from jack bean, with polysaccharides. Arch Biochem Biophys. 1965 Aug;111(2):407–414. doi: 10.1016/0003-9861(65)90203-1. [DOI] [PubMed] [Google Scholar]
  9. Hobert E. H., Datta P. Synthesis of biodegradative threonine dehydratase in Escherichia coli: role of amino acids, electron acceptors, and certain intermediary metabolites. J Bacteriol. 1983 Aug;155(2):586–592. doi: 10.1128/jb.155.2.586-592.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kim S. S., Datta P. Chemical characterization of biodegradative threonine dehydratases from two enteric bacteria. Biochim Biophys Acta. 1982 Aug 23;706(1):27–35. doi: 10.1016/0167-4838(82)90371-5. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Marko M. A., Chipperfield R., Birnboim H. C. A procedure for the large-scale isolation of highly purified plasmid DNA using alkaline extraction and binding to glass powder. Anal Biochem. 1982 Apr;121(2):382–387. doi: 10.1016/0003-2697(82)90497-3. [DOI] [PubMed] [Google Scholar]
  13. Merberg D., Datta P. Altered expression of biodegradative threonine dehydratase in Escherichia coli mutants. J Bacteriol. 1982 Apr;150(1):52–59. doi: 10.1128/jb.150.1.52-59.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miyoshi K., Huang T., Itakura K. Solid-phase synthesis of polynucleotides. III. Synthesis of polynucleotides with defined sequences by the block coupling phosphotriester method. Nucleic Acids Res. 1980 Nov 25;8(22):5491–5505. doi: 10.1093/nar/8.22.5491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Park L. S., Datta P. Inhibition of Escherichia coli biodegradative threonine dehydratase by pyruvate. J Bacteriol. 1979 Jun;138(3):1026–1028. doi: 10.1128/jb.138.3.1026-1028.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Park L. S., Datta P. Mechanism of catabolite inactivation of Escherichia coli biodegradative threonine dehydratase by glyoxylate. J Biol Chem. 1981 Jun 10;256(11):5362–5367. [PubMed] [Google Scholar]
  17. Shizuta Y., Hayaishi O. Regulation of biodegradative threonine deaminase synthesis in Escherichia coli by cyclic adenosine 3',5'-monophosphate. J Biol Chem. 1970 Oct 25;245(20):5416–5423. [PubMed] [Google Scholar]
  18. Shizuta Y., Hayaishi O. Regulation of biodegradative threonine deaminase. Curr Top Cell Regul. 1976;11:99–146. doi: 10.1016/b978-0-12-152811-9.50010-9. [DOI] [PubMed] [Google Scholar]
  19. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  20. UMBARGER H. E., BROWN B. Threonine deamination in Escherichia coli. II. Evidence for two L-threonine deaminases. J Bacteriol. 1957 Jan;73(1):105–112. doi: 10.1128/jb.73.1.105-112.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yanofsky C., Platt T., Crawford I. P., Nichols B. P., Christie G. E., Horowitz H., VanCleemput M., Wu A. M. The complete nucleotide sequence of the tryptophan operon of Escherichia coli. Nucleic Acids Res. 1981 Dec 21;9(24):6647–6668. doi: 10.1093/nar/9.24.6647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yui Y., Watanabe Y., Ito S., Shizuta Y., Hayaishi O. Multivalent induction of biodegradative threonine deaminase. J Bacteriol. 1977 Nov;132(2):363–369. doi: 10.1128/jb.132.2.363-369.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES