Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Jun;158(3):963–966. doi: 10.1128/jb.158.3.963-966.1984

Purification and characterization of the cytochrome oxidase from alkalophilic Bacillus firmus RAB.

M Kitada, T A Krulwich
PMCID: PMC215535  PMID: 6327654

Abstract

A cytochrome oxidase was purified 52-fold from membranes of alkalophilic Bacillus firmus RAB by extraction with Triton X-100, ion-exchange and hydroxyapatite chromatography, and gel filtration. On denaturing gels, the purified enzyme dissociated into two subunits of 56,000 and 40,000 Mr as well as a cytochrome c with an Mr of approximately 14,000. Heme contents calculated for an enzyme with a molecular weight of 110,000 were found to be 2 mol of heme a and 1 mol of heme c per mol of cytochrome oxidase; approximately 2 mol of copper per mol of purified enzyme was also found. Enzyme activity was observed in assays using reduced yeast or horse heart cytochrome c. Activity of the purified enzyme was optimal at pH 6.0 and in the presence of added lipids. Impure, membrane-associated activity exhibited a broader pH range for optimal activity extending to alkaline values.

Full text

PDF
963

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azzi A. Cytochrome c oxidase. Towards a clarification of its structure, interactions and mechanism. Biochim Biophys Acta. 1980 Dec;594(4):231–252. doi: 10.1016/0304-4173(80)90002-6. [DOI] [PubMed] [Google Scholar]
  2. Bill K., Casey R. P., Broger C., Azzi A. Affinity chromatography purification of cytochrome c oxidase: use of a yeast cytochrome c - thiol-Sepharose 4B column. FEBS Lett. 1980 Nov 3;120(2):248–250. doi: 10.1016/0014-5793(80)80308-5. [DOI] [PubMed] [Google Scholar]
  3. Chaudhry G. R., Suzuki I., Lees H. Cytochrome oxidase of Nitrobacter agilis: isolation by hydrophobic interaction chromatography. Can J Microbiol. 1980 Nov;26(11):1270–1274. doi: 10.1139/m80-212. [DOI] [PubMed] [Google Scholar]
  4. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  5. De Vrij W., Azzi A., Konings W. N. Structural and functional properties of cytochrome c oxidase from Bacillus subtilis W23. Eur J Biochem. 1983 Mar 1;131(1):97–103. doi: 10.1111/j.1432-1033.1983.tb07235.x. [DOI] [PubMed] [Google Scholar]
  6. Gennis R. B., Casey R. P., Azzi A., Ludwig B. Purification and characterization of the cytochrome c oxidase from Rhodopseudomonas sphaeroides. Eur J Biochem. 1982 Jun 15;125(1):189–195. doi: 10.1111/j.1432-1033.1982.tb06667.x. [DOI] [PubMed] [Google Scholar]
  7. Guffanti A. A., Susman P., Blanco R., Krulwich T. A. The protonmotive force and alpha-aminoisobutyric acid transport in an obligately alkalophilic bacterium. J Biol Chem. 1978 Feb 10;253(3):708–715. [PubMed] [Google Scholar]
  8. Hon-nami K., Oshima T. Cytochrome oxidase from an extreme thermophile. Thermus thermophilus HB8. Biochem Biophys Res Commun. 1980 Feb 12;92(3):1023–1029. doi: 10.1016/0006-291x(80)90804-9. [DOI] [PubMed] [Google Scholar]
  9. Jones C. W., Redfearn E. R. Electron transport in Azotobacter vinelandii. Biochim Biophys Acta. 1966 Mar 7;113(3):467–481. doi: 10.1016/s0926-6593(66)80005-x. [DOI] [PubMed] [Google Scholar]
  10. Kitada M., Guffanti A. A., Krulwich T. A. Bioenergetic properties and viability of alkalophilic Bacillus firmus RAB as a function of pH and Na+ contents of the incubation medium. J Bacteriol. 1982 Dec;152(3):1096–1104. doi: 10.1128/jb.152.3.1096-1104.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kitada M., Lewis R. J., Krulwich T. A. Respiratory chain of the alkalophilic bacterium Bacillus firmus RAB and its non-alkalophilic mutant derivative. J Bacteriol. 1983 Apr;154(1):330–335. doi: 10.1128/jb.154.1.330-335.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Krulwich T. A., Guffanti A. A. Physiology of acidophilic and alkalophilic bacteria. Adv Microb Physiol. 1983;24:173–214. doi: 10.1016/s0065-2911(08)60386-0. [DOI] [PubMed] [Google Scholar]
  13. Lewis R. J., Belkina S., Krulwich T. A. Alkalophiles have much higher cytochrome contents than conventional bacteria and than their own non-alkalophilic mutant derivatives. Biochem Biophys Res Commun. 1980 Jul 31;95(2):857–863. doi: 10.1016/0006-291x(80)90866-9. [DOI] [PubMed] [Google Scholar]
  14. Lewis R. J., Krulwich T. A., Reynafarje B., Lehninger A. L. Respiration-dependent proton translocation in alkalophilic Bacillus firmus RAB and its non-alkalophilic mutant derivative. J Biol Chem. 1983 Feb 25;258(4):2109–2111. [PubMed] [Google Scholar]
  15. Lewis R. J., Prince R. C., Dutton P. L., Knaff D. B., Krulwich T. A. The respiratory chain of Bacillus alcalophilus and its nonalkalophilic mutant derivative. J Biol Chem. 1981 Oct 25;256(20):10543–10549. [PubMed] [Google Scholar]
  16. Ludwig B., Schatz G. A two-subunit cytochrome c oxidase (cytochrome aa3) from Paracoccus dentrificans. Proc Natl Acad Sci U S A. 1980 Jan;77(1):196–200. doi: 10.1073/pnas.77.1.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mandel K. G., Guffanti A. A., Krulwich T. A. Monovalent cation/proton antiporters in membrane vesicles from Bacillus alcalophilus. J Biol Chem. 1980 Aug 10;255(15):7391–7396. [PubMed] [Google Scholar]
  18. Newman M. J., Wilson T. H. Solubilization and reconstitution of the lactose transport system from Escherichia coli. J Biol Chem. 1980 Nov 25;255(22):10583–10586. [PubMed] [Google Scholar]
  19. Püttner I., Solioz M., Carafoli E., Ludwig B. Dicyclohexylcarbodiimide does not inhibit proton pumping by cytochrome c oxidase of Paracoccus denitrificans. Eur J Biochem. 1983 Jul 15;134(1):33–37. doi: 10.1111/j.1432-1033.1983.tb07527.x. [DOI] [PubMed] [Google Scholar]
  20. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  21. Solioz M., Carafoli E., Ludwig B. The cytochrome c oxidase of Paracoccus denitrificans pumps protons in a reconstituted system. J Biol Chem. 1982 Feb 25;257(4):1579–1582. [PubMed] [Google Scholar]
  22. Sone N., Hinkle P. C. Proton transport by cytochrome c oxidase from the thermophilic bacterium PS3 reconstituted in liposomes. J Biol Chem. 1982 Nov 10;257(21):12600–12604. [PubMed] [Google Scholar]
  23. WILLIAMS J. N., Jr A METHOD FOR THE SIMULTANEOUS QUANTITATIVE ESTIMATION OF CYTOCHROMES A, B, C1, AND C IN MITOCHONDRIA. Arch Biochem Biophys. 1964 Sep;107:537–543. doi: 10.1016/0003-9861(64)90313-3. [DOI] [PubMed] [Google Scholar]
  24. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  25. Yamanaka T., Fujii K. Cytochrome a-type terminal oxidase derived from Thiobacillus novellus. Molecular and enzymatic properties. Biochim Biophys Acta. 1980 Jun 10;591(1):53–62. doi: 10.1016/0005-2728(80)90219-4. [DOI] [PubMed] [Google Scholar]
  26. Yamanaka T., Fujii K., Kamita Y. Subunits of cytochrome a-type terminal oxidases derived from Thiobacillus novellus and Nitrobacter agilis. J Biochem. 1979 Sep;86(3):821–824. doi: 10.1093/oxfordjournals.jbchem.a132590. [DOI] [PubMed] [Google Scholar]
  27. Yamanaka T., Kamita Y., Fukumori Y. Molecular and enzymatic properties of "cytochrome aa3"-type terminal oxidase derived from Nitrobacter agilis. J Biochem. 1981 Jan;89(1):265–273. doi: 10.1093/oxfordjournals.jbchem.a133190. [DOI] [PubMed] [Google Scholar]
  28. van Gelder B. F., Muijsers A. O. On cytochrome c oxidase. II. The ratio of cytochrome a to cytochrome a3. Biochim Biophys Acta. 1966 Apr 12;118(1):47–57. doi: 10.1016/s0926-6593(66)80143-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES