Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Jun;158(3):972–977. doi: 10.1128/jb.158.3.972-977.1984

Anaerobiosis, formate, nitrate, and pyrA are involved in the regulation of formate hydrogenlyase in Salmonella typhimurium.

E L Barrett, H S Kwan, J Macy
PMCID: PMC215537  PMID: 6427196

Abstract

Three groups of mutants defective in the fermentative production of gas were isolated from Salmonella typhimurium LT2 subjected to transposition mutagenesis with Mu d(Apr lac). One group consisted of strains which lacked hydrogenase. The mutation site for this group was located in the vicinity of the known hyd gene. A second group consisted of mutants which lacked the formate dehyrogenase associated with hydrogenase. The mutation site was located in four of them. It was not in the vicinity of the previously described fhlD gene but was instead located at 93 min on the Salmonella map. The third mutant group, which consisted of strains that produced gas in triple sugar iron agar but not in nutrient agar supplemented with glucose, appeared to be pyrA mutants. The insertion site was located in the vicinity of pyrA , and they required arginine and pyrimidines for growth. Expression of the lac operon in the hyd mutants was induced by anaerobiosis. It was only slightly increased by the addition of formate under anaerobic conditions and slightly decreased by the addition of nitrate. Nitrate had no effect in an hyd ::Mu d strain that also carried a chlC::Tn10 insertion. Full expression of the lac operon in the fhl mutants required both formate and anaerobic conditions. The presence of nitrate in addition to formate resulted in activities about half those obtained in its absence, even in the fhl ::Mu d chlC::Tn10 double mutant. In the absence of formate, nitrate reduced expression only in the fhl ::Mu d single mutants. Expression of the lac operon among the pyrA mutants was repressed by arginine and cytosine and also by anaerobiosis. An explanation for the involvement of pyrA in aerobic and anaerobic energy metabolism is proposed.

Full text

PDF
972

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abd-el-Al A., Ingraham J. L. Control of carbamyl phosphate synthesis in Salmonella typhimurium. J Biol Chem. 1969 Aug 10;244(15):4033–4038. [PubMed] [Google Scholar]
  2. Adams M. W., Hall D. O. Purification of the membrane-bound hydrogenase of Escherichia coli. Biochem J. 1979 Oct 1;183(1):11–22. doi: 10.1042/bj1830011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barrett E. L., Jackson C. E., Fukumoto H. T., Chang G. W. Formate dehydrogenase mutants of Salmonella typhimurium: a new medium for their isolation and new mutant classes. Mol Gen Genet. 1979;177(1):95–101. doi: 10.1007/BF00267258. [DOI] [PubMed] [Google Scholar]
  4. Barrett E. L., Riggs D. L. Salmonella typhimurium mutants defective in the formate dehydrogenase linked to nitrate reductase. J Bacteriol. 1982 Feb;149(2):554–560. doi: 10.1128/jb.149.2.554-560.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Bussey L. B., Ingraham J. L. A regulatory gene (use) affecting the expression of pyrA and certain other pyrimidine genes. J Bacteriol. 1982 Jul;151(1):144–152. doi: 10.1128/jb.151.1.144-152.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Charles H. P., Roberts G. A. Carbon dioxide as a growth factor for mutants of Escherichia coli. J Gen Microbiol. 1968 Apr;51(2):211–224. doi: 10.1099/00221287-51-2-211. [DOI] [PubMed] [Google Scholar]
  8. Chippaux M., Pascal M. C., Casse F. Formate hydrogenlyase system in Salmonella typhimurium LT2. Eur J Biochem. 1977 Jan 3;72(1):149–155. doi: 10.1111/j.1432-1033.1977.tb11234.x. [DOI] [PubMed] [Google Scholar]
  9. Cox J. C., Edwards E. S., DeMoss J. A. Resolution of distinct selenium-containing formate dehydrogenases from Escherichia coli. J Bacteriol. 1981 Mar;145(3):1317–1324. doi: 10.1128/jb.145.3.1317-1324.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Enoch H. G., Lester R. L. The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli. J Biol Chem. 1975 Sep 10;250(17):6693–6705. [PubMed] [Google Scholar]
  11. Kwan H. S., Barrett E. L. Roles for menaquinone and the two trimethylamine oxide (TMAO) reductases in TMAO respiration in Salmonella typhimurium: Mu d(Apr lac) insertion mutations in men and tor. J Bacteriol. 1983 Sep;155(3):1147–1155. doi: 10.1128/jb.155.3.1147-1155.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lester R. L., DeMoss J. A. Effects of molybdate and selenite on formate and nitrate metabolism in Escherichia coli. J Bacteriol. 1971 Mar;105(3):1006–1014. doi: 10.1128/jb.105.3.1006-1014.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Macy J., Kulla H., Gottschalk G. H2-dependent anaerobic growth of Escherichia coli on L-malate: succinate formation. J Bacteriol. 1976 Feb;125(2):423–428. doi: 10.1128/jb.125.2.423-428.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. PECK H. D., Jr, GEST H. Formic dehydrogenase and the hydrogenlyase enzyme complex in coli-aerogenes bacteria. J Bacteriol. 1957 Jun;73(6):706–721. doi: 10.1128/jb.73.6.706-721.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pascal M. C., Casse F., Chippaux M., Lepelletier M. Genetic analysis of mutants of Escherichia coli K12 and Salmonella typhimurium LT2 deficient in hydrogenase activity. Mol Gen Genet. 1975 Nov 24;141(2):173–179. doi: 10.1007/BF00267682. [DOI] [PubMed] [Google Scholar]
  16. Ruíz-Herrera J., Alvarez A., Figueroa I. Solubilization and properties of formate dehydrogenases from the membrane of Escherichia coli. Biochim Biophys Acta. 1972 Dec 7;289(2):254–261. doi: 10.1016/0005-2744(72)90075-7. [DOI] [PubMed] [Google Scholar]
  17. Sanderson K. E., Roth J. R. Linkage map of Salmonella typhimurium, Edition VI. Microbiol Rev. 1983 Sep;47(3):410–453. doi: 10.1128/mr.47.3.410-453.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schink B., Schlegel H. G. The membrane-bound hydrogenase of Alcaligenes eutrophus. I. Solubilization, purification, and biochemical properties. Biochim Biophys Acta. 1979 Apr 12;567(2):315–324. doi: 10.1016/0005-2744(79)90117-7. [DOI] [PubMed] [Google Scholar]
  19. Somers J. M., Sweet G. D., Kay W. W. Flurorcitrate resistant tricarboxylate transport mutants of Salmonella typhimurium. Mol Gen Genet. 1981;181(3):338–345. doi: 10.1007/BF00425608. [DOI] [PubMed] [Google Scholar]
  20. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES