Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Jun;158(3):1109–1114. doi: 10.1128/jb.158.3.1109-1114.1984

Characterization of a Streptococcus pneumoniae mutant with altered electric transmembrane potential.

M C Trombe, G Lanéelle, A M Sicard
PMCID: PMC215557  PMID: 6233266

Abstract

It is possible to select transmembrane potential (delta psi)-altered mutants in Streptococcus pneumoniae on the basis of their resistance to the antifolate methotrexate. Comparison of such a mutant strain ( amiA9 ) with its parent was used to evaluate the role of delta psi in the uptake of certain amino acids. The delta psi-dependent uptake of isoleucine, leucine, valine, and asparagine showed a reduced maximum velocity of uptake, and decrease in the transport constant of the energy-dependent, delta psi-independent uptake of lysine, methionine, and glutamine was observed. No reduction of the intracellular pool of ATP or of lactate excretion could be detected in the mutant strain. Moreover, studies on membrane preparations suggest that the phenotype expressed by the amiA mutation is not a consequence of alteration of its ATPase activity or susceptibility to N,N'-dicyclohexylcarbodiimide. Therefore, it is unlikely that the amiA mutation affects the H+ F1F0 ATPase which is involved in the establishment of the proton motive force in anaerobic bacteria. We propose that another function contributes to delta psi in S. pneumoniae. The amiA gene may be the structural gene of that function.

Full text

PDF
1109

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakker E. P., Mangerich W. E. Interconversion of components of the bacterial proton motive force by electrogenic potassium transport. J Bacteriol. 1981 Sep;147(3):820–826. doi: 10.1128/jb.147.3.820-826.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Booth I. R., Mitchell W. J., Hamilton W. A. Quantitative analysis of proton-linked transport systems. The lactose permease of Escherichia coli. Biochem J. 1979 Sep 15;182(3):687–696. doi: 10.1042/bj1820687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheer S., Gentile J. H., Hegre C. S. Improved methods for ATP analysis. Anal Biochem. 1974 Jul;60(1):102–114. doi: 10.1016/0003-2697(74)90134-1. [DOI] [PubMed] [Google Scholar]
  4. DELSAL J. L., MANHOURI H. Etude comparative des dosages colorimétriques du phosphore. IV. Dosage de l'orthophosphate en présence d'esters phosphoriques; nouvelles méthodes. Bull Soc Chim Biol (Paris) 1958;40(11):1623–1636. [PubMed] [Google Scholar]
  5. Evans D. J., Jr Membrane adenosine triphosphatase of Escherichia coli: activation by calcium ion and inhibition by monovalent cations. J Bacteriol. 1969 Nov;100(2):914–922. doi: 10.1128/jb.100.2.914-922.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FORREST W. W., WALKER D. J. SYNTHESIS OF RESERVE MATERIALS FOR ENDOGENOUS METABOLISM IN STREPTOCOCCUS FAECALIS. J Bacteriol. 1965 Jun;89:1448–1452. doi: 10.1128/jb.89.6.1448-1452.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Friedberg I., Kaback H. R. Electrochemical proton gradient in Micrococcus lysodeikticus cells and membrane vesicles. J Bacteriol. 1980 May;142(2):651–658. doi: 10.1128/jb.142.2.651-658.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ghazi A., Shechter E. Lactose transport in Escherichia coli cells. Dependence of kinetic parameters on the transmembrane electrical potential difference. Biochim Biophys Acta. 1981 Jun 22;644(2):305–315. doi: 10.1016/0005-2736(81)90388-6. [DOI] [PubMed] [Google Scholar]
  9. Heefner D. L. Transport of H+, K+, Na+ and Ca++ in Streptococcus. Mol Cell Biochem. 1982 Apr 30;44(2):81–106. doi: 10.1007/BF00226893. [DOI] [PubMed] [Google Scholar]
  10. Hong J. S. An ecf mutation in Escherichia coli pleiotropically affecting energy coupling in active transport but not generation or maintenance of membrane potential. J Biol Chem. 1977 Dec 10;252(23):8582–8588. [PubMed] [Google Scholar]
  11. Kadner R. J., Winkler H. H. Energy coupling for methionine transport in Escherichia coli. J Bacteriol. 1975 Sep;123(3):985–991. doi: 10.1128/jb.123.3.985-991.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kashket E. R., Barker S. L. Effects of potassium ions on the electrical and pH gradients across the membrane of Streptococcus lactis cells. J Bacteriol. 1977 Jun;130(3):1017–1023. doi: 10.1128/jb.130.3.1017-1023.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lieberman M. A., Hong J. S. A mutant of Escherichia coli defective in the coupling of metabolic energy to active transport. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4395–4399. doi: 10.1073/pnas.71.11.4395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lieberman M. A., Simon M., Hong J. S. Characterization of Escherichia coli mutant incapable of maintaining a transmembrane potential. MetC ecfts mutations. J Biol Chem. 1977 Jun 25;252(12):4056–4067. [PubMed] [Google Scholar]
  16. Otto R., Lageveen R. G., Veldkamp H., Konings W. N. Lactate efflux-induced electrical potential in membrane vesicles of Streptococcus cremoris. J Bacteriol. 1982 Feb;149(2):733–738. doi: 10.1128/jb.149.2.733-738.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Quintanilha A. T., Packer L. Surface potential changes on energization of the mitochondrial inner membrane. FEBS Lett. 1977 Jun 15;78(2):161–165. doi: 10.1016/0014-5793(77)80296-2. [DOI] [PubMed] [Google Scholar]
  18. Rosen B. P. Restoration of active transport in an Mg2+-adenosine triphosphatase-deficient mutant of Escherichia coli. J Bacteriol. 1973 Dec;116(3):1124–1129. doi: 10.1128/jb.116.3.1124-1129.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]
  20. SICARD A. M. A NEW SYNTHETIC MEDIUM FOR DIPLOCOCCUS PNEUMONIAE, AND ITS USE FOR THE STUDY OF RECIPROCAL TRANSFORMATIONS AT THE AMIA LOCUS. Genetics. 1964 Jul;50:31–44. doi: 10.1093/genetics/50.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schairer H. U., Friedl P., Schmid B. I., Vogel G. The use of several energy-coupling reactions in characterizing mutants of Escherichia coli K12 defective in oxidative phosphorylation. Eur J Biochem. 1976 Jul 1;66(2):257–268. doi: 10.1111/j.1432-1033.1976.tb10515.x. [DOI] [PubMed] [Google Scholar]
  22. Sirotnak F. M., Sargent M. G., Hutchison D. J. Genetically alterable transport of amethopterin in Diplococcus pneumoniae. II. Impairment of the system associated with various mutant genotypes. J Bacteriol. 1967 Jan;93(1):315–319. doi: 10.1128/jb.93.1.315-319.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tiraby G., Fox M. S., Bernheimer H. Marker discrimination in deoxyribonucleic acid-mediated transformation of various Pneumococcus strains. J Bacteriol. 1975 Feb;121(2):608–618. doi: 10.1128/jb.121.2.608-618.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tomchika K. I., Hong J. S. Transport-defective Escherichia coli ecf mutant permeable to protons and nucleotides. J Bacteriol. 1978 Feb;133(2):1008–1014. doi: 10.1128/jb.133.2.1008-1014.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Trombe M. C., Sicard A. M. Analyse phénotypique et génétique de mutants de résistance à l'améthoptérine présentant une altération du système de transport de l'anti-métabolite. C R Acad Sci Hebd Seances Acad Sci D. 1973 Jun 25;276(26):3495–3498. [PubMed] [Google Scholar]
  26. Trombe M. C., Sicard A. M. Dihydrofolate reductases from the wild type and aminopterin-resistant mutants of Diplococcus pneumoniae. J Bacteriol. 1975 Mar;121(3):766–770. doi: 10.1128/jb.121.3.766-770.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vasseghi H., Claverys J. P. Amplification of a chimeric plasmid carrying an erythromycin-resistance determinant introduced into the genome of Streptococcus pneumoniae. Gene. 1983 Mar;21(3):285–292. doi: 10.1016/0378-1119(83)90012-4. [DOI] [PubMed] [Google Scholar]
  28. Wojtczak L., Famulski K. S., Nałecz M. J., Zborowski J. Influence of the surface potential on the Michaelis constant of membrane-bound enzymes: effect of membrane solubilization. FEBS Lett. 1982 Mar 22;139(2):221–224. doi: 10.1016/0014-5793(82)80856-9. [DOI] [PubMed] [Google Scholar]
  29. Wojtczak L., Nałecz M. J. Surface change of biological membranes as a possible regulator of membrane-bound enzymes. Eur J Biochem. 1979 Feb 15;94(1):99–107. doi: 10.1111/j.1432-1033.1979.tb12876.x. [DOI] [PubMed] [Google Scholar]
  30. Yamamoto T. H., Mével-Ninio M., Valentine R. C. Essential role of membrane ATPase or coupling factor for anaerobic growth and anaerobic active transport in Escherichia coli. Biochim Biophys Acta. 1973 Sep 26;314(3):267–275. doi: 10.1016/0005-2728(73)90111-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES