Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Jun;158(3):1122–1127. doi: 10.1128/jb.158.3.1122-1127.1984

Enzymatic proof for the identity of the S-sulfocysteine synthase and cysteine synthase B of Salmonella typhimurium.

T Nakamura, H Iwahashi, Y Eguchi
PMCID: PMC215559  PMID: 6373737

Abstract

S-Sulfocysteine synthase was isolated from Salmonella typhimurium LT-2 to homogeneous form with polyacrylamide gel electrophoresis. The molecular weight of this enzyme was determined to be ca. 55,000. The enzyme consisted of two identically sized subunits, and it contained one pyridoxal phosphate per subunit. The enzyme catalyzed the biosynthesis of cysteine or S-methylcysteine from sulfide or methanethiol and O-acetylserine, respectively, in addition to the formation of S-sulfocysteine from thiosulfate and O-acetylserine. The enzyme is identical to cysteine synthase B. The intracellular level of this enzyme was regulated by lesser extents of the same factors as those effective for cysteine synthase A.

Full text

PDF
1122

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams E. Fluorometric determination of pyridoxal phosphate in enzymes. Methods Enzymol. 1979;62:407–410. doi: 10.1016/0076-6879(79)62249-8. [DOI] [PubMed] [Google Scholar]
  2. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Becker M. A., Kredich N. M., Tomkins G. M. The purification and characterization of O-acetylserine sulfhydrylase-A from Salmonella typhimurium. J Biol Chem. 1969 May 10;244(9):2418–2427. [PubMed] [Google Scholar]
  4. Becker M. A., Tomkins G. M. Pleiotrophy in a cysteine-requiring mutant of Samonella typhimurium resulting from altered protein-protein interaction. J Biol Chem. 1969 Nov 10;244(21):6023–6030. [PubMed] [Google Scholar]
  5. Castric P. A., Conn E. E. Formation of -cyanoalanine by O-acetylserine sulfhydrylase. J Bacteriol. 1971 Oct;108(1):132–136. doi: 10.1128/jb.108.1.132-136.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  7. Hulanicka M. D., Hallquist S. G., Kredich N. M., Mojica-A T. Regulation of O-acetylserine sulfhydrylase B by L-cysteine in Salmonella typhimurium. J Bacteriol. 1979 Oct;140(1):141–146. doi: 10.1128/jb.140.1.141-146.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kredich N. M. Regulation of L-cysteine biosynthesis in Salmonella typhimurium. I. Effects of growth of varying sulfur sources and O-acetyl-L-serine on gene expression. J Biol Chem. 1971 Jun 10;246(11):3474–3484. [PubMed] [Google Scholar]
  9. Kredich N. M., Tomkins G. M. The enzymic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium. J Biol Chem. 1966 Nov 10;241(21):4955–4965. [PubMed] [Google Scholar]
  10. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  11. Nakamura T., Kon Y., Iwahashi H., Eguchi Y. Evidence that thiosulfate assimilation by Salmonella typhimurium is catalyzed by cysteine synthase B. J Bacteriol. 1983 Nov;156(2):656–662. doi: 10.1128/jb.156.2.656-662.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. SORBO B. A colorimetric method for the determination of thiosulfate. Biochim Biophys Acta. 1957 Feb;23(2):412–416. doi: 10.1016/0006-3002(57)90346-3. [DOI] [PubMed] [Google Scholar]
  13. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  14. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  15. Wiebers J. L., Garner H. R. Acyl derivatives of homoserine as substrates for homocysteine synthesis in Neurospora crassa, yeast, and Escherichia coli. J Biol Chem. 1967 Dec 10;242(23):5644–5649. [PubMed] [Google Scholar]
  16. Woodin T. S., Segel I. H. Glutathione reductase-dependent metabolism of cysteine-S-sulfate by Penicillium chrysogenum. Biochim Biophys Acta. 1968 Aug 27;167(1):78–88. doi: 10.1016/0005-2744(68)90278-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES