Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Jul;159(1):42–46. doi: 10.1128/jb.159.1.42-46.1984

Biosynthesis of the sulfonolipid 2-amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid in the gliding bacterium Cytophaga johnsonae.

R H White
PMCID: PMC215589  PMID: 6330048

Abstract

The biosynthesis of the sulfonolipid 2-amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid (capnine) was studied by measuring the incorporation of possible precursors into the lipid by cells grown in the presence of precursors which were labeled with stable isotopes. Cells grown on yeast extract in the presence of DL-[3,3-2H2]serine contained 40.1 mol% of the protein-bound serine and 5.0 mol% of the protein-bound cysteine derived from the labeled serine. Cells grown in the presence of DL-[3,3-2H2]cystine acid contained 86.4 mol% of the molecules that had two deuteriums. These results are consistent with the possibility that biosynthesis of capnine occurs by the condensation of 13-methylmyristoyl-coenzyme A with cysteic acid, in a reaction analogous to the condensation of a palmitoyl-coenzyme A with serine to form 3-keto-sphinganine during the biosynthesis of sphingolipids.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aminuddin M., Nicholas D. J. Sulphide oxidation linked to the reduction of nitrate and nitrite in Thiobacillus denitrificans. Biochim Biophys Acta. 1973 Oct 19;325(1):81–93. doi: 10.1016/0005-2728(73)90153-9. [DOI] [PubMed] [Google Scholar]
  2. Anderson R., Kates M., Volcani B. E. Identification of the sulfolipids in the non-photosynthetic diatom Nitzschia alba. Biochim Biophys Acta. 1978 Jan 27;528(1):89–106. doi: 10.1016/0005-2760(78)90055-3. [DOI] [PubMed] [Google Scholar]
  3. Anderson R., Kates M., Volcani B. E. Studies on the biosynthesis of sulfolipids in the Diatom Nitzschia alba. Biochim Biophys Acta. 1979 Jun 21;573(3):557–561. doi: 10.1016/0005-2760(79)90230-3. [DOI] [PubMed] [Google Scholar]
  4. BAALSRUD K., BAALSRUD K. S. Studies on Thiobacillus denitrificans. Arch Mikrobiol. 1954;20(1):34–62. doi: 10.1007/BF00412265. [DOI] [PubMed] [Google Scholar]
  5. BENSON A. A. THE PLANT SULFOLIPID. Adv Lipid Res. 1963;1:387–394. doi: 10.1016/b978-1-4831-9937-5.50016-8. [DOI] [PubMed] [Google Scholar]
  6. Braun P. E., Morell P., Radin N. S. Synthesis of C18- and C20-dihydrosphingosines, ketodihydrosphingosines, and ceramides by microsomal preparations from mouse brain. J Biol Chem. 1970 Jan 25;245(2):335–341. [PubMed] [Google Scholar]
  7. Braun P. E., Snell E. E. Biosynthesis of sphingolipid bases. II. Keto intermediates in synthesis of sphingosine and dihydrosphingosine by cell-free extracts of Hansenula ciferri. J Biol Chem. 1968 Jul 25;243(14):3775–3783. [PubMed] [Google Scholar]
  8. CHAPEVILLE F., FROMAGEOT P. La formation enzymatique de l'acide cystéinesulfinique à partir de sulfite. Biochim Biophys Acta. 1954 Jul;14(3):415–420. doi: 10.1016/0006-3002(54)90201-2. [DOI] [PubMed] [Google Scholar]
  9. Davies W. H., Mercer E. I., Goodwin T. W. Some observations on the biosynthesis of the plant sulpholipid by Euglena gracilis. Biochem J. 1966 Feb;98(2):369–373. doi: 10.1042/bj0980369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GAVER R. C., SWEELEY C. C. METHODS FOR METHANOLYSIS OF SPHINGOLIPIDS AND DIRECT DETERMINATION OF LONG-CHAIN BASES BY GAS CHROMATOGRAPHY. J Am Oil Chem Soc. 1965 Apr;42:294–298. doi: 10.1007/BF02540132. [DOI] [PubMed] [Google Scholar]
  11. Godchaux W., 3rd, Leadbetter E. R. Capnocytophaga spp. contain sulfonolipids that are novel in procaryotes. J Bacteriol. 1980 Nov;144(2):592–602. doi: 10.1128/jb.144.2.592-602.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Godchaux W., 3rd, Leadbetter E. R. Sulfonolipids of gliding bacteria. Structure of the N-acylaminosulfonates. J Biol Chem. 1984 Mar 10;259(5):2982–2990. [PubMed] [Google Scholar]
  13. Godchaux W., 3rd, Leadbetter E. R. Unusual sulfonolipids are characteristic of the Cytophaga-Flexibacter group. J Bacteriol. 1983 Mar;153(3):1238–1246. doi: 10.1128/jb.153.3.1238-1246.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hoskin F. C., Brande M. An improved sulphur assay applied to a problem of isethionate metabolism in squid axon and other nerves. J Neurochem. 1973 May;20(5):1317–1327. doi: 10.1111/j.1471-4159.1973.tb00243.x. [DOI] [PubMed] [Google Scholar]
  15. Kondo H., Anada H., Osawa K., Ishimoto M. Formation of sulfoacetaldehyde from taurine in bacterial extracts. J Biochem. 1971 Mar;69(3):621–623. [PubMed] [Google Scholar]
  16. Krisnangkura K., Sweeley C. C. Studies on the mechanism of 3-ketosphinganine synthetase. J Biol Chem. 1976 Mar 25;251(6):1597–1602. [PubMed] [Google Scholar]
  17. Langworthy T. A., Mayberry W. R., Smith P. F. A sulfonolipid and novel glucosamidyl glycolipids from the extreme thermoacidophile Bacillus acidocaldarius. Biochim Biophys Acta. 1976 Jun 22;431(3):550–569. doi: 10.1016/0005-2760(76)90220-4. [DOI] [PubMed] [Google Scholar]
  18. Leadbetter E. R., Holt S. C., Socransky S. S. Capnocytophaga: new genus of gram-negative gliding bacteria. I. General characteristics, taxonomic considerations and significance. Arch Microbiol. 1979 Jul;122(1):9–16. doi: 10.1007/BF00408040. [DOI] [PubMed] [Google Scholar]
  19. Lombardini J. B., Singer T. P., Boyer P. D. Cystein oxygenase. II. Studies on the mechanism of the reaction with 18oxygen. J Biol Chem. 1969 Mar 10;244(5):1172–1175. [PubMed] [Google Scholar]
  20. Remtulla M. A., Applegarth D. A., Clark D. G., Williams I. H. Analysis of isethionic acid in mammalian tissues. Life Sci. 1977 Jun 15;20(12):2029–2036. doi: 10.1016/0024-3205(77)90182-5. [DOI] [PubMed] [Google Scholar]
  21. Shimamoto G., Berk R. S. Catabolism of taurine in Pseudomonas aeruginosa. Biochim Biophys Acta. 1979 Aug 15;569(2):287–292. doi: 10.1016/0005-2744(79)90064-0. [DOI] [PubMed] [Google Scholar]
  22. Taylor C. D., Wolfe R. S. Structure and methylation of coenzyme M(HSCH2CH2SO3). J Biol Chem. 1974 Aug 10;249(15):4879–4885. [PubMed] [Google Scholar]
  23. White R. H. A method for the measurement of sulfur-34 abundance in bound cysteine and methionine. Anal Biochem. 1981 Jul 1;114(2):349–354. doi: 10.1016/0003-2697(81)90492-9. [DOI] [PubMed] [Google Scholar]
  24. White R. H. Proton exchange on carbons 2 and 3 of serine during their conversion into methyl groups of methionine and thymine in Escherichia coli. Biochemistry. 1983 Apr 12;22(8):1883–1888. doi: 10.1021/bi00277a022. [DOI] [PubMed] [Google Scholar]
  25. Wood B. J., Nichols B. W., James A. T. The lipids and fatty acid metabolism of photosynthetic bacteria. Biochim Biophys Acta. 1965 Oct 4;106(2):261–273. doi: 10.1016/0005-2760(65)90034-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES