Abstract
The pathways for catabolism of fructose were investigated in the type strains of Azospirillum lipoferum and Azospirillum brasilense grown aerobically with (NH4)2SO4 as the nitrogen source. When grown on fructose, the former species possessed a complete Entner-Doudoroff pathway, whereas the latter species lacked activity for glucose-6-phosphate dehydrogenase. Both species possessed a complete catabolic Embden-Meyerhof-Parnas pathway. Neither species possessed the key enzyme of the hexose monophosphate pathway, 6-phosphogluconate dehydrogenase. Both species could phosphorylate fructose to fructose-1-phosphate by means of a phosphoenolpyruvate-phosphotransferase system, and high activities of 1-phosphofructokinase occurred. Both species possessed glucokinase activity, but only A. lipoferum had hexokinase activity; moreover, the cells of A. brasilense were nearly impermeable to glucose, accounting for the inability of this species to grow on glucose. Both species possessed pyruvate dehydrogenase, a complete tricarboxylic acid cycle, a glyoxylate shunt, and malic enzyme. Analysis of the acidic end products for both species indicated the formation of only small amounts of various organic acids, and most of the titratable acidity was due to utilization of the ammonium ions of the medium. Gluconic acid was not formed during growth of either species on fructose but was detected during growth of A. lipoferum on glucose; this species also possessed an NADP-linked glucose dehydrogenase and gluconokinase.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amarasingham C. R., Davis B. D. Regulation of alpha-ketoglutarate dehydrogenase formation in Escherichia coli. J Biol Chem. 1965 Sep;240(9):3664–3668. [PubMed] [Google Scholar]
- Baumann P., Baumann L. Catabolism of D-fructose and D-ribose by Pseudomonas doudoroffii. I. Physiological studies and mutant analysis. Arch Microbiol. 1975 Nov 7;105(3):225–240. doi: 10.1007/BF00447141. [DOI] [PubMed] [Google Scholar]
- DOUDOROFF M., PALLERONI N. J., MACGEE J., OHARA M. Metabolism of carbohydrates by Pseudomonas saccharophila. I. Oxidation of fructose by intact cells and crude cell-free preparations. J Bacteriol. 1956 Feb;71(2):196–201. doi: 10.1128/jb.71.2.196-201.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daron H. H., Rutter W. J., Cunsalus I. C. Isocitrate lyase. Kinetics and substrate-tritium exchange reactions. Biochemistry. 1966 Mar;5(3):895–903. doi: 10.1021/bi00867a013. [DOI] [PubMed] [Google Scholar]
- Eggerer H., Klette A. Uber das Katalyseprinzip der Malat-synthase. Eur J Biochem. 1967 Jun;1(4):447–475. doi: 10.1111/j.1432-1033.1967.tb00094.x. [DOI] [PubMed] [Google Scholar]
- Hylemon P. B., Phibbs P. V., Jr Independent regulation of hexose catabolizing enzymes and glucose transport activity in Pseudomonas aeruginosa. Biochem Biophys Res Commun. 1972 Sep 5;48(5):1041–1048. doi: 10.1016/0006-291x(72)90813-3. [DOI] [PubMed] [Google Scholar]
- KANAREK L., HILL R. L. THE PREPARATION AND CHARACTERIZATION OF FUMARASE FROM SWINE HEART MUSCLE. J Biol Chem. 1964 Dec;239:4202–4206. [PubMed] [Google Scholar]
- Kornberg H. L., Reeves R. E. Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli. Biochem J. 1972 Aug;128(5):1339–1344. doi: 10.1042/bj1281339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laughon B. E., Krieg N. R. Sugar catabolism in Aquaspirillum gracile. J Bacteriol. 1974 Sep;119(3):691–697. doi: 10.1128/jb.119.3.691-697.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NOLTMANN E. A. ISOLATION OF CRYSTALLINE PHOSPHOGLUCOSE ISOMERASE FROM RABBIT MUSCLE. J Biol Chem. 1964 May;239:1545–1550. [PubMed] [Google Scholar]
- Novick N. J., Tyler M. E. L-arabinose metabolism in Azospirillum brasiliense. J Bacteriol. 1982 Jan;149(1):364–367. doi: 10.1128/jb.149.1.364-367.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Brien R. W., Neijssel O. M., Tempest D. W. Glucose phosphoenolpyruvate phosphotransferase activity and glucose uptake rate of Klebsiella aerogenes growing in chemostat culture. J Gen Microbiol. 1980 Feb;116(2):305–314. doi: 10.1099/00221287-116-2-305. [DOI] [PubMed] [Google Scholar]
- PALLERONI N. J., CONTOPOULOU R., DOUDOROFF M. Metabolism of carbohydrates by Pseudomonas saccharophila. II. Nature of the kinase reaction involving fructose. J Bacteriol. 1956 Feb;71(2):202–207. doi: 10.1128/jb.71.2.202-207.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phibbs P. V., Jr, Eagon R. G. Transport and phosphorylation of glucose, fructose, and mannitol by Pseudomonas aeruginosa. Arch Biochem Biophys. 1970 Jun;138(2):470–482. doi: 10.1016/0003-9861(70)90371-1. [DOI] [PubMed] [Google Scholar]
- RACKER E. Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim Biophys Acta. 1950 Jan;4(1-3):211–214. doi: 10.1016/0006-3002(50)90026-6. [DOI] [PubMed] [Google Scholar]
- Romano A. H., Trifone J. D., Brustolon M. Distribution of the phosphoenolpyruvate:glucose phosphotransferase system in fermentative bacteria. J Bacteriol. 1979 Jul;139(1):93–97. doi: 10.1128/jb.139.1.93-97.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SLATER E. C., BORNER W. D., Jr The effect of fluoride on the succinic oxidase system. Biochem J. 1952 Oct;52(2):185–196. doi: 10.1042/bj0520185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sawyer M. H., Baumann P., Baumann L., Berman S. M., Cánovas J. L., Berman R. H. Pathways of D-fructose catabolism in species of Pseudomonas. Arch Microbiol. 1977 Feb 4;112(1):49–55. doi: 10.1007/BF00446653. [DOI] [PubMed] [Google Scholar]
- Spring T. G., Wold F. Enolase from Escherichia coli. Methods Enzymol. 1975;42:323–329. doi: 10.1016/0076-6879(75)42135-8. [DOI] [PubMed] [Google Scholar]
- Tarrand J. J., Krieg N. R., Döbereiner J. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol. 1978 Aug;24(8):967–980. doi: 10.1139/m78-160. [DOI] [PubMed] [Google Scholar]
- Westby C. A., Cutshall D. S., Vigil G. V. Metabolism of various carbon sources by Azospirillum brasilense. J Bacteriol. 1983 Dec;156(3):1369–1372. doi: 10.1128/jb.156.3.1369-1372.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida A., Freese E. Lactate dehydrogenase from Bacillus subtilis. Methods Enzymol. 1975;41:304–309. doi: 10.1016/s0076-6879(75)41069-2. [DOI] [PubMed] [Google Scholar]
