Abstract
Nucleotide sequences of 5S rRNAs from four bacteria, Staphylococcus aureus Smith (diffuse), Staphylococcus epidermidis ATCC 14990, Micrococcus luteus ATCC 9341 and Micrococcus luteus ATCC 4698, were determined. The secondary structural models of S. aureus and S. epidermidis sequences showed characteristics of the gram-positive bacterial 5S rRNA (116-N type [H. Hori and S. Osawa, Proc. Natl. Acad. Sci. U.S.A. 76:381-385, 1979]). Those of M. luteus ATCC 9341 and M. luteus ATCC 4698 together with that of Streptomyces griseus (A. Simoncsits, Nucleic Acids Res. 8:4111-4124, 1980) showed intermediary characteristics between the gram-positive and gram-negative (120-N type [H. Hori and S. Osawa, 1979]) 5S rRNAs. This and previous studies revealed that there exist at least three major groups of eubacteria having distinct 5S rRNA and belonging to different stems in the 5S rRNA phylogenic tree.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brownlee G. G., Sanger F., Barrell B. G. The sequence of 5 s ribosomal ribonucleic acid. J Mol Biol. 1968 Jun 28;34(3):379–412. doi: 10.1016/0022-2836(68)90168-x. [DOI] [PubMed] [Google Scholar]
- Donis-Keller H. Phy M: an RNase activity specific for U and A residues useful in RNA sequence analysis. Nucleic Acids Res. 1980 Jul 25;8(14):3133–3142. doi: 10.1093/nar/8.14.3133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hori H. Molecular evolution of 5S RNA. Mol Gen Genet. 1976 May 7;145(2):119–123. doi: 10.1007/BF00269583. [DOI] [PubMed] [Google Scholar]
- Hori H., Osawa S. Evolutionary change in 5S RNA secondary structure and a phylogenic tree of 54 5S RNA species. Proc Natl Acad Sci U S A. 1979 Jan;76(1):381–385. doi: 10.1073/pnas.76.1.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hori H., Osawa S., Murao K., Ishikura H. The nucleotide sequence of 5S ribosomal RNA from Micrococcus lysodeikticus. Nucleic Acids Res. 1980 Nov 25;8(22):5423–5426. doi: 10.1093/nar/8.22.5423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
- Kuchino Y., Kato M., Sugisaki H., Nishimura S. Nucleotide sequence of starfish initiator tRNA. Nucleic Acids Res. 1979 Aug 10;6(11):3459–3469. doi: 10.1093/nar/6.11.3459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumazaki T., Hori H., Osawa S. The nucleotide sequence of 5 S ribosomal RNA from a sea anemone, Anthopleura japonica. FEBS Lett. 1982 Sep 20;146(2):307–310. doi: 10.1016/0014-5793(82)80940-x. [DOI] [PubMed] [Google Scholar]
- Marotta C. A., Varricchio F., Smith I., Weissman S. M. The primary structure of Bacillus subtilis and Bacillus stearothermophilus 5 S ribonucleic acids. J Biol Chem. 1976 May 25;251(10):3122–3127. [PubMed] [Google Scholar]
- Peattie D. A. Direct chemical method for sequencing RNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1760–1764. doi: 10.1073/pnas.76.4.1760. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peattie D. A., Douthwaite S., Garrett R. A., Noller H. F. A "bulged" double helix in a RNA-protein contact site. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7331–7335. doi: 10.1073/pnas.78.12.7331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simoncsits A. 3' Terminal labelling of RNA of RNA with beta-32P-pyrophosphate group and its application to the sequence analysis of 5S RNA from Streptomyces griseus. Nucleic Acids Res. 1980 Sep 25;8(18):4111–4124. doi: 10.1093/nar/8.18.4111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tinoco I., Jr, Uhlenbeck O. C., Levine M. D. Estimation of secondary structure in ribonucleic acids. Nature. 1971 Apr 9;230(5293):362–367. doi: 10.1038/230362a0. [DOI] [PubMed] [Google Scholar]