Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Jul;159(1):321–328. doi: 10.1128/jb.159.1.321-328.1984

Protein synthesis is required for in vivo activation of polysialic acid capsule synthesis in Escherichia coli K1.

C Whitfield, E R Vimr, J W Costerton, F A Troy
PMCID: PMC215632  PMID: 6376473

Abstract

The kinetics of in vivo expression of the polysialosyl (K1) capsular antigen in Escherichia coli has been studied. Growth of E. coli K1 strains at 15 degrees C prevents K1 polysaccharide synthesis (F. A. Troy and M. A. McCloskey, J. Biol. Chem. 254:7377-7387, 1979). Synthesis is reactivated in cells grown at 15 degrees C after upshift to 37 degrees C. The early expression and resultant morphology of K1 capsular antigen was monitored in temperature upshift experiments by using electron microscopy. Morphological stabilization of the capsule was achieved by treatment of cells with an antiserum specific for the alpha, 2-8-linked polysialosyl antigen. The kinetics of K1 capsule expression in growing cells was measured by bacteriophage adsorption with phage K1F, which required the K1 capsule for binding. The results of temperature upshift experiments showed that capsule first appeared on the cell surface after 10 min. Subsequent bacteriophage binding increased linearly with time until a fully encapsulated state was reached 45 min after upshift. The initiation of K1 capsule appearance was dependent on protein synthesis and the addition of chloramphenicol before temperature upshift prevented any expression of the K1 antigen. Chloramphenicol reduced the rate of K1 synthesis when added after temperature upshift. We conclude from these results that protein synthesis is a prerequisite for activation of capsule expression in vivo, but not for subsequent elongation of polysialosyl chains.

Full text

PDF
321

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARRY G. T. Colominic acid, a polymer of N-acetylneuraminic acid. J Exp Med. 1958 Apr 1;107(4):507–521. doi: 10.1084/jem.107.4.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARRY G. T., GOEBEL W. F. Colominic acid, a substance of bacterial origin related to sialic acid. Nature. 1957 Jan 26;179(4552):206–206. doi: 10.1038/179206a0. [DOI] [PubMed] [Google Scholar]
  3. Bayer M. E., Thurow H. Polysaccharide capsule of Escherichia coli: microscope study of its size, structure, and sites of synthesis. J Bacteriol. 1977 May;130(2):911–936. doi: 10.1128/jb.130.2.911-936.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Birdsell D. C., Doyle R. J., Morgenstern M. Organization of teichoic acid in the cell wall of Bacillus subtilis. J Bacteriol. 1975 Feb;121(2):726–734. doi: 10.1128/jb.121.2.726-734.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bolaños R., DeWitt C. W. Isolation and characterization of the K1 (L) antigen of Escherichia coli. J Bacteriol. 1966 Mar;91(3):987–996. doi: 10.1128/jb.91.3.987-996.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bortolussi R., Ferrieri P., Quie P. G. Influence of growth temperature of Escherichia coli on K1 capsular antigen production and resistance to opsonization. Infect Immun. 1983 Mar;39(3):1136–1141. doi: 10.1128/iai.39.3.1136-1141.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DEWITT C. W., ROWE J. A. Sialic acids (N,7-O-diacetylneuraminic acid and N-acetylneuraminic acid) in Escherichia coli. I. Isolation and identification. J Bacteriol. 1961 Dec;82:838–848. doi: 10.1128/jb.82.6.838-848.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DEWITT C. W., ZELL E. A. Sialic acids (N,7-O-diacetylneuraminic acid and N-acetylneuraminic adcid) in Escherichia coli. II. Their presence on the cell wall surface and relationship to K antigen. J Bacteriol. 1961 Dec;82:849–856. doi: 10.1128/jb.82.6.849-856.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ito K., Sato T., Yura T. Synthesis and assembly of the membrane proteins in E. coli. Cell. 1977 Jul;11(3):551–559. doi: 10.1016/0092-8674(77)90073-3. [DOI] [PubMed] [Google Scholar]
  10. Lin J. J., Wu H. C. Assembly of membrane proteins in Escherichia coli. J Biol Chem. 1980 Jan 25;255(2):802–806. [PubMed] [Google Scholar]
  11. Mackie E. B., Brown K. N., Lam J., Costerton J. W. Morphological stabilization of capsules of group B streptococci, types Ia, Ib, II, and III, with specific antibody. J Bacteriol. 1979 May;138(2):609–617. doi: 10.1128/jb.138.2.609-617.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mühlradt P. F., Menzel J., Golecki J. R., Speth V. Outer membrane of salmonella. Sites of export of newly synthesised lipopolysaccharide on the bacterial surface. Eur J Biochem. 1973 Jun 15;35(3):471–481. doi: 10.1111/j.1432-1033.1973.tb02861.x. [DOI] [PubMed] [Google Scholar]
  13. Orskov F., Orskov I., Sutton A., Schneerson R., Lin W., Egan W., Hoff G. E., Robbins J. B. Form variation in Escherichia coli K1: determined by O-acetylation of the capsular polysaccharide. J Exp Med. 1979 Mar 1;149(3):669–685. doi: 10.1084/jem.149.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rohr T. E., Troy F. A. Structure and biosynthesis of surface polymers containing polysialic acid in Escherichia coli. J Biol Chem. 1980 Mar 25;255(6):2332–2342. [PubMed] [Google Scholar]
  15. Sutherland I. W. Biosynthesis of microbial exopolysaccharides. Adv Microb Physiol. 1982;23:79–150. doi: 10.1016/s0065-2911(08)60336-7. [DOI] [PubMed] [Google Scholar]
  16. Troy F. A., 2nd The chemistry and biosynthesis of selected bacterial capsular polymers. Annu Rev Microbiol. 1979;33:519–560. doi: 10.1146/annurev.mi.33.100179.002511. [DOI] [PubMed] [Google Scholar]
  17. Troy F. A., McCloskey M. A. Role of a membranous sialyltransferase complex in the synthesis of surface polymers containing polysialic acid in Escherichia coli. Temperature-induced alteration in the assembly process. J Biol Chem. 1979 Aug 10;254(15):7377–7387. [PubMed] [Google Scholar]
  18. Troy F. A., Vijay I. K., Tesche N. Role of undecaprenyl phosphate in synthesis of polymers containing sialic acid in Escherichia coli. J Biol Chem. 1975 Jan 10;250(1):156–163. [PubMed] [Google Scholar]
  19. Vimr E. R., McCoy R. D., Vollger H. F., Wilkison N. C., Troy F. A. Use of prokaryotic-derived probes to identify poly(sialic acid) in neonatal neuronal membranes. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1971–1975. doi: 10.1073/pnas.81.7.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES