Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Jul;159(1):400–403. doi: 10.1128/jb.159.1.400-403.1984

Derepression of nitrogenase by addition of malate to cultures of Rhodospirillum rubrum grown with glutamate as the carbon and nitrogen source.

T R Hoover, P W Ludden
PMCID: PMC215647  PMID: 6145702

Abstract

Rhodospirillum rubrum grown in continuous culture with glutamate as the sole fixed C and N source produced no nitrogenase, and the cultures were characterized by high extracellular ammonium concentrations. Addition of organic acids derepressed nitrogenase. Glutamate dehydrogenase, glutamine synthetase, glutamate synthase, malate dehydrogenase, nitrogenase, and ammonium were assayed before and after malate addition.

Full text

PDF
400

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L., Fuller R. C. Photosynthesis in Rhodospirillum rubrum. 3. Metabolic control of reductive pentose phosphate and tricarboxylic acid cycle enzymes. Plant Physiol. 1967 Apr;42(4):497–509. doi: 10.1104/pp.42.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BROWN R. H., DUDA G. D., KORKES S., HANDLER P. A colorimetric micromethod for determination of ammonia; the ammonia content of rat tissues and human plasma. Arch Biochem Biophys. 1957 Feb;66(2):301–309. doi: 10.1016/s0003-9861(57)80005-8. [DOI] [PubMed] [Google Scholar]
  3. COLEMAN G. S. The dissimilation of amino acids by Rhodospirillum rubrum. J Gen Microbiol. 1956 Oct;15(2):248–256. doi: 10.1099/00221287-15-2-248. [DOI] [PubMed] [Google Scholar]
  4. COLEMAN G. S. The incorporation of amino acid carbon by Rhodospirillum rubrum. Biochim Biophys Acta. 1958 Dec;30(3):549–559. doi: 10.1016/0006-3002(58)90102-1. [DOI] [PubMed] [Google Scholar]
  5. Chaykin S. Assay of nicotinamide deamidase. Determination of ammonia by the indophenol reaction. Anal Biochem. 1969 Oct 1;31(1):375–382. doi: 10.1016/0003-2697(69)90278-4. [DOI] [PubMed] [Google Scholar]
  6. Dougall D. K. Evidence for the presence of glutamate synthase in extracts of carrot cell cultures. Biochem Biophys Res Commun. 1974 Jun 4;58(3):639–646. doi: 10.1016/s0006-291x(74)80466-3. [DOI] [PubMed] [Google Scholar]
  7. Gordon J. K., Brill W. J. Derepression of nitrogenase synthesis in the presence of excess NH4+. Biochem Biophys Res Commun. 1974 Aug 5;59(3):967–971. doi: 10.1016/s0006-291x(74)80074-4. [DOI] [PubMed] [Google Scholar]
  8. Gordon J. K., Brill W. J. Mutants that produce nitrogenase in the presence of ammonia. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3501–3503. doi: 10.1073/pnas.69.12.3501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hallenbeck P. C., Meyer C. M., Vignais P. M. Regulation of nitrogenase in the photosynthetic bacterium Rhodopseudomonas capsulata as studied by two-dimensional gel electrophoresis. J Bacteriol. 1982 Sep;151(3):1612–1616. doi: 10.1128/jb.151.3.1612-1616.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hillmer P., Gest H. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells. J Bacteriol. 1977 Feb;129(2):732–739. doi: 10.1128/jb.129.2.732-739.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johansson B. C., Gest H. Adenylylation/deadenylylation control of the glutamine synthetase of Rhodopseudomonas capsulata. Eur J Biochem. 1977 Dec 1;81(2):365–371. doi: 10.1111/j.1432-1033.1977.tb11960.x. [DOI] [PubMed] [Google Scholar]
  12. Kamen M. D., Gest H. Evidence for a Nitrogenase System in the Photosynthetic Bacterium Rhodospirillum rubrum. Science. 1949 Jun 3;109(2840):560–560. doi: 10.1126/science.109.2840.560. [DOI] [PubMed] [Google Scholar]
  13. Koch B., Evans H. J. Reduction of acetylene to ethylene by soybean root nodules. Plant Physiol. 1966 Dec;41(10):1748–1750. doi: 10.1104/pp.41.10.1748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ludden P. W., Preston G. G., Dowling T. E. Comparison of active and inactive forms of iron protein from Rhodospirillum rubrum. Biochem J. 1982 Jun 1;203(3):663–668. doi: 10.1042/bj2030663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Munson T. O., Burris R. H. Nitrogen fixation by Rhodospirillum rubrum grown in nitrogen-limited continuous culture. J Bacteriol. 1969 Mar;97(3):1093–1098. doi: 10.1128/jb.97.3.1093-1098.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nordlund S., Ludden P. W. Incorporation of adenine into the modifying group of inactive iron protein of nitrogenase from Rhodospirillum rubrum. Biochem J. 1983 Mar 1;209(3):881–884. doi: 10.1042/bj2090881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. ORMEROD J. G., ORMEROD K. S., GEST H. Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch Biochem Biophys. 1961 Sep;94:449–463. doi: 10.1016/0003-9861(61)90073-x. [DOI] [PubMed] [Google Scholar]
  18. Sahl H. G., Trüper H. G. Malic enzyme of chromatium vinosum. Arch Microbiol. 1980 Aug;127(1):17–24. doi: 10.1007/BF00414350. [DOI] [PubMed] [Google Scholar]
  19. Schick H. J. Substrate and light dependent fixation of molecular nitrogen in Rhodospirillum rubrum. Arch Mikrobiol. 1971;75(2):89–101. doi: 10.1007/BF00407997. [DOI] [PubMed] [Google Scholar]
  20. Shanmugam K. T., Morandi C. Amino acids as repressors of nitrogenase biosynthesis in Klebsiella pneumoniae. Biochim Biophys Acta. 1976 Jul 21;437(2):322–332. doi: 10.1016/0304-4165(76)90002-7. [DOI] [PubMed] [Google Scholar]
  21. Strandberg G. W., Wilson P. W. Formation of the nitrogen-fixing enzyme system in Azotobacter vinelandii. Can J Microbiol. 1968 Jan;14(1):25–31. doi: 10.1139/m68-005. [DOI] [PubMed] [Google Scholar]
  22. Tubb R. S., Postgate J. R. Control of nitrogenase synthesis in Klebsiella pneumoniae. J Gen Microbiol. 1973 Nov;79(1):103–117. doi: 10.1099/00221287-79-1-103. [DOI] [PubMed] [Google Scholar]
  23. Tyler B. Regulation of the assimilation of nitrogen compounds. Annu Rev Biochem. 1978;47:1127–1162. doi: 10.1146/annurev.bi.47.070178.005403. [DOI] [PubMed] [Google Scholar]
  24. Weare N. M., Shanmugam K. T. Photoproduction of ammonium ion from N2 in Rhodospirillum rubrum. Arch Microbiol. 1976 Nov 2;110(23):207–213. doi: 10.1007/BF00690229. [DOI] [PubMed] [Google Scholar]
  25. Yoch D. C., Cantu M., Zhang Z. M. Evidence for a glutamine synthetase-chromatophore association in the phototroph Rhodospirillum rubrum: purification, properties, and regulation of the enzyme. J Bacteriol. 1983 May;154(2):632–639. doi: 10.1128/jb.154.2.632-639.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES