Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Jul;159(1):429–432. doi: 10.1128/jb.159.1.429-432.1984

Two unlinked lysine genes (LYS9 and LYS14) are required for the synthesis of saccharopine reductase in Saccharomyces cerevisiae.

C W Borell, L A Urrestarazu, J K Bhattacharjee
PMCID: PMC215656  PMID: 6429126

Abstract

Three lysine auxotrophs, strains AU363, 7305d, and 8201-7A, were investigated genetically and biochemically to determine their gene loci, biochemical lesions, and roles in the lysine biosynthesis of Saccharomyces cerevisiae. These mutants were leaky and blocked after the alpha-aminoadipate step. Complementation studies placed these three mutations into a single, new complementation group, lys14. Tetrad analysis from appropriate crosses provided evidence that the lys14 locus represented a single nuclear gene and that lys14 mutants were genetically distinct from the other mutants (lys1, lys2, lys5, and lys9) blocked after the alpha-aminoadipate step. The lys14 strains, like lys9 mutants, accumulated alpha-aminoadipate-semialdehyde and lacked significant amounts of saccharopine reductase activity. On the bases of these results, it was concluded, therefore, that LYS9 and LYS14, two distinct genes, were required for the biosynthesis of saccharopine reductase in wild-type S. cerevisiae.

Full text

PDF
429

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhattacharjee J. K., Sinha A. K. Relationship among the genes, enzymes, and intermediates of the biosynthetic pathway of lysine in Saccharomyces. Mol Gen Genet. 1972;115(1):26–30. doi: 10.1007/BF00272214. [DOI] [PubMed] [Google Scholar]
  2. Biswas G. D., Bhattacharjee J. K. Induction and complementation of lysine auxotrophs in Saccharomyces. Antonie Van Leeuwenhoek. 1974;40(2):221–231. doi: 10.1007/BF00394380. [DOI] [PubMed] [Google Scholar]
  3. Chattoo B. B., Sherman F., Azubalis D. A., Fjellstedt T. A., Mehnert D., Ogur M. Selection of lys2 Mutants of the Yeast SACCHAROMYCES CEREVISIAE by the Utilization of alpha-AMINOADIPATE. Genetics. 1979 Sep;93(1):51–65. doi: 10.1093/genetics/93.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eibel H., Philippsen P. Identification of the cloned S. cerevisiae LYS2 gene by an integrative transformation approach. Mol Gen Genet. 1983;191(1):66–73. doi: 10.1007/BF00330891. [DOI] [PubMed] [Google Scholar]
  5. Fjellstedt T. A., Ogur M. Effects of supersuppressor genes on enzymes controlling lysine biosynthesis in Saccharomyces. J Bacteriol. 1970 Jan;101(1):108–117. doi: 10.1128/jb.101.1.108-117.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kinzel J. J., Winston M. K., Bhattacharjee J. K. Role of L-lysine-alpha-ketoglutarate aminotransferase in catabolism of lysine as a nitrogen source for Rhodotorula glutinis. J Bacteriol. 1983 Jul;155(1):417–419. doi: 10.1128/jb.155.1.417-419.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. McClary D. O., Nulty W. L., Miller G. R. EFFECT OF POTASSIUM VERSUS SODIUM IN THE SPORULATION OF SACCHAROMYCES. J Bacteriol. 1959 Sep;78(3):362–368. doi: 10.1128/jb.78.3.362-368.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mortimer R. K., Schild D. Genetic map of Saccharomyces cerevisiae. Microbiol Rev. 1980 Dec;44(4):519–571. doi: 10.1128/mr.44.4.519-571.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Piérard A., Messenguy F., Feller A., Hilger F. Dual regulation of the synthesis of the arginine pathway carbamoylphosphate synthase of Saccharomyces cerevisiae by specific and general controls of amino acid biosynthesis. Mol Gen Genet. 1979 Jul 13;174(2):163–171. doi: 10.1007/BF00268353. [DOI] [PubMed] [Google Scholar]
  10. SAGISAKA S., SHIMURA K. Enzymic reduction of alpha-amino-adipic acid by yeast enzyme. Nature. 1959 Nov 28;184(Suppl 22):1709–1710. doi: 10.1038/1841709b0. [DOI] [PubMed] [Google Scholar]
  11. Sinha A. K., Bhattacharjee J. K. Control of a lysine-biosynthetic step by two unlinked genes of Saccharomyces. Biochem Biophys Res Commun. 1970;39(6):1205–1210. doi: 10.1016/0006-291x(70)90689-3. [DOI] [PubMed] [Google Scholar]
  12. Sinha A. K., Kurtz M., Bhattacharjee J. K. Effect of hydroxylysine on the biosynthesis of lysine in saccharomyces. J Bacteriol. 1971 Nov;108(2):715–719. doi: 10.1128/jb.108.2.715-719.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. TRUPIN J. S., BROQUIST H. P. SACCHAROPINE, AN INTERMEDIATE OF THE AMINOADIPIC ACID PATHWAY OF LYSINE BIOSYNTHESIS. I. STUDIES IN NEUROSPORA CRASSA. J Biol Chem. 1965 Jun;240:2524–2530. [PubMed] [Google Scholar]
  14. Winston M. K., Bhattacharjee J. K. Growth inhibition by alpha-aminoadipate and reversal of the effect by specific amino acid supplements in Saccharomyces cerevisiae. J Bacteriol. 1982 Nov;152(2):874–879. doi: 10.1128/jb.152.2.874-879.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES