Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Aug;159(2):540–554. doi: 10.1128/jb.159.2.540-554.1984

Induction of the photosynthetic membranes of Rhodopseudomonas sphaeroides: biochemical and morphological studies.

J Chory, T J Donohue, A R Varga, L A Staehelin, S Kaplan
PMCID: PMC215678  PMID: 6611335

Abstract

Cells of Rhodopseudomonas sphaeroides grown in a 25% O2 atmosphere were rapidly subjected to total anaerobiosis in the presence of light to study the progression of events associated with the de novo synthesis of the inducible intracytoplasmic membrane (ICM). This abrupt change in physiological conditions resulted in the immediate cessation of cell growth and whole cell protein, DNA, and phospholipid accumulation. Detectable cell growth and whole cell protein accumulation resumed ca. 12 h later. Bulk phospholipid accumulation paralleled cell growth, but the synthesis of individual phospholipid species during the adaptation period suggested the existence of a specific regulatory site in phospholipid synthesis at the level of the phosphatidylethanolamine methyltransferase system. Freeze-fracture electron microscopy showed that aerobic cells contain small indentations within the cell membrane that appear to be converted into discrete ICM invaginations within 1 h after the imposition of anaerobiosis. Microscopic examination also revealed a series of morphological changes in ICM structure and organization during the lag period before the initiation of photosynthetic growth. Bacteriochlorophyll synthesis and the formation of the two light-harvesting bacteriochlorophyll-protein complexes of R. sphaeroides (B800-850 and B875) occurred coordinately within 2 h after the shift to anaerobic conditions. Using antibodies prepared against various ICM-specific polypeptides, the synthesis of reaction center proteins and the polypeptides associated with the B800-850 complex was monitored. The reaction center H polypeptide was immunochemically detected at low levels in the cell membrane of aerobic cells, which contained no detectable ICM or bacteriochlorophyll. The results are discussed in terms of the oxygen-dependent regulation of gene expression in R. sphaeroides and the possible role of the reaction center H polypeptide and the cell membrane indentations in the site-specific assembly of ICM pigment-protein complexes during the de novo synthesis of the ICM.

Full text

PDF
540

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aagaard J., Sistrom W. R. Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria. Photochem Photobiol. 1972 Feb;15(2):209–225. doi: 10.1111/j.1751-1097.1972.tb06240.x. [DOI] [PubMed] [Google Scholar]
  2. Ames G. F. Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J Bacteriol. 1968 Mar;95(3):833–843. doi: 10.1128/jb.95.3.833-843.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  4. BULL M. J., LASCELLES J. The association of protein synthesis with formation of pigments in some photosynthetic bacteria. Biochem J. 1963 Apr;87:15–28. doi: 10.1042/bj0870015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boni L. T., Hui S. W. Polymorphic phase behaviour of dilinoleoylphosphatidylethanolamine and palmitoyloleoylphosphatidylcholine mixtures. Structural changes between hexagonal, cubic and bilayer phases. Biochim Biophys Acta. 1983 Jun 10;731(2):177–185. doi: 10.1016/0005-2736(83)90007-x. [DOI] [PubMed] [Google Scholar]
  6. Branton D., Bullivant S., Gilula N. B., Karnovsky M. J., Moor H., Mühlethaler K., Northcote D. H., Packer L., Satir B., Satir P. Freeze-etching nomenclature. Science. 1975 Oct 3;190(4209):54–56. doi: 10.1126/science.1166299. [DOI] [PubMed] [Google Scholar]
  7. Broglie R. M., Hunter C. N., Delepelaire P., Niederman R. A., Chua N. H., Clayton R. K. Isolation and characterization of the pigment-protein complexes of Rhodopseudomonas sphaeroides by lithium dodecyl sulfate/polyacrylamide gel electrophoresis. Proc Natl Acad Sci U S A. 1980 Jan;77(1):87–91. doi: 10.1073/pnas.77.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  9. COHEN-BAZIRE G., SISTROM W. R., STANIER R. Y. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol. 1957 Feb;49(1):25–68. doi: 10.1002/jcp.1030490104. [DOI] [PubMed] [Google Scholar]
  10. Cain B. D., Deal C. D., Fraley R. T., Kaplan S. In vivo intermembrane transfer of phospholipids in the photosynthetic bacterium Rhodopseudomonas sphaeroides. J Bacteriol. 1981 Mar;145(3):1154–1166. doi: 10.1128/jb.145.3.1154-1166.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cain B. D., Donohue T. J., Shepherd W. D., Kaplan S. Localization of phospholipid biosynthetic enzyme activities in cell-free fractions derived from Rhodopseudomonas sphaeroides. J Biol Chem. 1984 Jan 25;259(2):942–948. [PubMed] [Google Scholar]
  12. Campbell T. B., Lueking D. R. Light-mediated regulation of phospholipid synthesis in Rhodopseudomonas sphaeroides. J Bacteriol. 1983 Aug;155(2):806–816. doi: 10.1128/jb.155.2.806-816.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chory J., Kaplan S. Light-dependent regulation of the synthesis of soluble and intracytoplasmic membrane proteins of Rhodopseudomonas sphaeroides. J Bacteriol. 1983 Jan;153(1):465–474. doi: 10.1128/jb.153.1.465-474.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chory J., Kaplan S. The in vitro transcription-translation of DNA and RNA templates by extracts of Rhodopseudomonas sphaeroides. Optimization and comparison of template specificity with Escherichia coli extracts and in vivo synthesis. J Biol Chem. 1982 Dec 25;257(24):15110–15121. [PubMed] [Google Scholar]
  15. Cogdell R. J., Crofts A. R. Analysis of the pigment content of an antenna pigment-protein complex from three strains of Rhodopseudomonas sphaeroides. Biochim Biophys Acta. 1978 Jun 8;502(3):409–416. doi: 10.1016/0005-2728(78)90074-9. [DOI] [PubMed] [Google Scholar]
  16. Cohen L. K., Kaplan S. Characterization of the three major intracytoplasmic membrane polypeptides isolated from Rhodopseudomonas sphaeroides. J Biol Chem. 1981 Jun 10;256(11):5909–5915. [PubMed] [Google Scholar]
  17. Cohen L. K., Kaplan S. The non-detergent solubilization and isolation of intracytoplasmic membrane polypeptides from Rhodopseudomonas sphaeroides. J Biol Chem. 1981 Jun 10;256(11):5901–5908. [PubMed] [Google Scholar]
  18. Cullis P. R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta. 1979 Dec 20;559(4):399–420. doi: 10.1016/0304-4157(79)90012-1. [DOI] [PubMed] [Google Scholar]
  19. Ding D. H., Kaplan S. Separation of inner and outer membranes of Rhodopseudomonas spheroides. Prep Biochem. 1976;6(1):61–79. doi: 10.1080/00327487608061599. [DOI] [PubMed] [Google Scholar]
  20. Donohue T. J., Cain B. D., Kaplan S. Alterations in the phospholipid composition of Rhodopseudomonas sphaeroides and other bacteria induced by Tris. J Bacteriol. 1982 Nov;152(2):595–606. doi: 10.1128/jb.152.2.595-606.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Donohue T. J., Cain B. D., Kaplan S. Purification and characterization of an N-acylphosphatidylserine from Rhodopseudomonas sphaeroides. Biochemistry. 1982 May 25;21(11):2765–2773. doi: 10.1021/bi00540a029. [DOI] [PubMed] [Google Scholar]
  22. Fornari C. S., Kaplan S. Genetic transformation of Rhodopseudomonas sphaeroides by plasmid DNA. J Bacteriol. 1982 Oct;152(1):89–97. doi: 10.1128/jb.152.1.89-97.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Fraley R. T., Lueking D. R., Kaplan S. Intracytoplasmic membrane synthesis in synchronous cell populations of Rhodopseudomonas sphaeroides. Polypeptide insertion into growing membrane. J Biol Chem. 1978 Jan 25;253(2):458–464. [PubMed] [Google Scholar]
  24. Fraley R. T., Lueking D. R., Kaplan S. The relationship of intracytoplasmic membrane assembly to the cell division cycle in Rhodopseudomonas sphaeroides. J Biol Chem. 1979 Mar 25;254(6):1980–1986. [PubMed] [Google Scholar]
  25. Fricke U. Tritosol: a new scintillation cocktail based on Triton X-100. Anal Biochem. 1975 Feb;63(2):555–558. doi: 10.1016/0003-2697(75)90379-6. [DOI] [PubMed] [Google Scholar]
  26. Hunter C. N., Pennoyer J. D., Niederman R. A. Assembly and structural organization of pigment-protein complexes in membranes of Rhodopseudomonas sphaeroides. Prog Clin Biol Res. 1982;102(Pt B):257–265. [PubMed] [Google Scholar]
  27. Kranz R. G., Gennis R. B. A quantitative radioimmunological screening method for specific gene products. Anal Biochem. 1982 Dec;127(2):247–257. doi: 10.1016/0003-2697(82)90169-5. [DOI] [PubMed] [Google Scholar]
  28. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  29. Louie K., Dowhan W. Investigations on the association of phosphatidylserine synthase with the ribosomal component from Escherichia coli. J Biol Chem. 1980 Feb 10;255(3):1124–1127. [PubMed] [Google Scholar]
  30. Lueking D. R., Fraley R. T., Kaplan S. Intracytoplasmic membrane synthesis in synchronous cell populations of Rhodopseudomonas sphaeroides. Fate of "old" and "new" membrane. J Biol Chem. 1978 Jan 25;253(2):451–457. [PubMed] [Google Scholar]
  31. MUNKRES K. D., RICHARDS F. M. THE PURIFICATION AND PROPERTIES OF NEUROSPORA MALATE DEHYDROGENASE. Arch Biochem Biophys. 1965 Mar;109:466–479. doi: 10.1016/0003-9861(65)90391-7. [DOI] [PubMed] [Google Scholar]
  32. Miziorko H. M., Lorimer G. H. Ribulose-1,5-bisphosphate carboxylase-oxygenase. Annu Rev Biochem. 1983;52:507–535. doi: 10.1146/annurev.bi.52.070183.002451. [DOI] [PubMed] [Google Scholar]
  33. Nelson T., Harpster M. H., Mayfield S. P., Taylor W. C. Light-regulated gene expression during maize leaf development. J Cell Biol. 1984 Feb;98(2):558–564. doi: 10.1083/jcb.98.2.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Niederman R. A., Mallon D. E., Langan J. J. Membranes of Rhodopseudomonas sphaeroides. IV. Assembly of chromatophores in low-aeration cell suspensions. Biochim Biophys Acta. 1976 Aug 13;440(2):429–447. doi: 10.1016/0005-2728(76)90076-1. [DOI] [PubMed] [Google Scholar]
  35. Niederman R. A., Mallon D. E., Parks L. C. Membranes of Rhodopseudomonas sphaeroides. VI. Isolation of a fraction enriched in newly synthesized bacteriochlorophyll alpha-protein complexes. Biochim Biophys Acta. 1979 Aug 7;555(2):210–220. doi: 10.1016/0005-2736(79)90161-5. [DOI] [PubMed] [Google Scholar]
  36. Nieth K. F., Drews G. Formation of reaction centers and light-harvesting bacteriochlorophyll-protein complexes in Rhodopseudomonas capsulata. Arch Microbiol. 1975 Jun 20;104(1):77–82. doi: 10.1007/BF00447303. [DOI] [PubMed] [Google Scholar]
  37. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  38. Okamura M. Y., Steiner L. A., Feher G. Characterization of reaction centers from photosynthetic bacteria. I. Subunit structure of the protein mediating the primary photochemistry in Rhodopseudomonas spheroides R-26. Biochemistry. 1974 Mar 26;13(7):1394–1403. doi: 10.1021/bi00704a013. [DOI] [PubMed] [Google Scholar]
  39. Peters G. A., Cellarius R. A. Photosynthetic membrane development in Rhodopseudomonas spheroides. II. Correlation of pigment incorporation with morphological aspects of thylakoid formation. J Bioenerg. 1972 Aug;3(5):345–359. doi: 10.1007/BF01516074. [DOI] [PubMed] [Google Scholar]
  40. Poorthuis B. J., Yazaki P. J., Hostetler K. Y. An improved two dimensional thin-layer chromatography system for the separation of phosphatidylglycerol and its derivatives. J Lipid Res. 1976 Jul;17(4):433–437. [PubMed] [Google Scholar]
  41. Prince R. C., Baccarini-Melandri A., Hauska G. A., Melandri B. A., Crofts A. R. Asymmetry of an energy transducing membrane the location of cytochrome c2 in Rhodopseudomonas spheroides and Rhodopseudomonas capsulata. Biochim Biophys Acta. 1975 May 15;387(2):212–227. doi: 10.1016/0005-2728(75)90104-8. [DOI] [PubMed] [Google Scholar]
  42. Sauer K., Austin L. A. Bacteriochlorophyll-protein complexes from the light-harvesting antenna of photosynthetic bacteria. Biochemistry. 1978 May 16;17(10):2011–2019. doi: 10.1021/bi00603a033. [DOI] [PubMed] [Google Scholar]
  43. Schumacher A., Drews G. The formation of bacteriochlorophyll.protein complexes of the photosynthetic apparatus of Rhodopseudomonas capsulata during early stages of development. Biochim Biophys Acta. 1978 Feb 9;501(2):183–194. doi: 10.1016/0005-2728(78)90025-7. [DOI] [PubMed] [Google Scholar]
  44. Shepherd W. D., Kaplan S., Park J. T. Penicillin-binding proteins of Rhodopseudomonas sphaeroides and their membrane localization. J Bacteriol. 1981 Aug;147(2):354–361. doi: 10.1128/jb.147.2.354-361.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Shiozawa J. A., Welte W., Hodapp N., Drews G. Studies on the size and composition of the isolated light-harvesting B800-850 pigment-protein complex of Rhodopseudomonas capsulata. Arch Biochem Biophys. 1982 Feb;213(2):473–485. doi: 10.1016/0003-9861(82)90573-2. [DOI] [PubMed] [Google Scholar]
  46. Tabita F. R., McFadden B. A. D-ribulose 1,5-diphosphate carboxylase from Rhodospirillum rubrum. I. Levels, purification, and effects of metallic ions. J Biol Chem. 1974 Jun 10;249(11):3453–3458. [PubMed] [Google Scholar]
  47. Tabita F. R., McFadden B. A. Regulation of ribulose-1,5-diphosphate carboxylase by 6-phospho-D-gluconate. Biochem Biophys Res Commun. 1972 Sep 5;48(5):1153–1159. doi: 10.1016/0006-291x(72)90831-5. [DOI] [PubMed] [Google Scholar]
  48. Takemoto J. Kinetics of photosynthetic membrane protein assembly in Rhodopseudomonas spheroides. Arch Biochem Biophys. 1974 Aug;163(2):515–520. doi: 10.1016/0003-9861(74)90509-8. [DOI] [PubMed] [Google Scholar]
  49. Takemoto J., Lascelles J. Coupling between bacteriochlorophyll and membrane protein synthesis in Rhodopseudomonas spheroides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):799–803. doi: 10.1073/pnas.70.3.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Taylor D. P., Cohen S. N., Clark W. G., Marrs B. L. Alignment of genetic and restriction maps of the photosynthesis region of the Rhodopseudomonas capsulata chromosome by a conjugation-mediated marker rescue technique. J Bacteriol. 1983 May;154(2):580–590. doi: 10.1128/jb.154.2.580-590.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Williams J. C., Steiner L. A., Ogden R. C., Simon M. I., Feher G. Primary structure of the M subunit of the reaction center from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6505–6509. doi: 10.1073/pnas.80.21.6505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wraight C. A., Lueking D. R., Fraley R. T., Kaplan S. Synthesis of photopigments and electron transport components in synchronous phototrophic cultures of Rhodopseudomonas sphaeroides. J Biol Chem. 1978 Jan 25;253(2):465–471. [PubMed] [Google Scholar]
  53. Youvan D. C., Elder J. T., Sandlin D. E., Zsebo K., Alder D. P., Panopoulos N. J., Marrs B. L., Hearst J. E. R-prime site-directed transposon Tn7 mutagenesis of the photosynthetic apparatus in Rhodopseudomonas capsulata. J Mol Biol. 1982 Nov 25;162(1):17–41. doi: 10.1016/0022-2836(82)90160-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES