Abstract
Uptake hydrogenase (EC 1.12) from Azotobacter vinelandii has been purified 250-fold from membrane preparations. Purification involved selective solubilization of the enzyme from the membranes, followed by successive chromatography on DEAE-cellulose, Sephadex G-100, and hydroxylapatite. Freshly isolated hydrogenase showed a specific activity of 110 mumol of H2 uptake (min X mg of protein)-1. The purified hydrogenase still contained two minor contaminants that ran near the front on sodium dodecyl sulfate-polyacrylamide gels. The enzyme appears to be a monomer of molecular weight near 60,000 +/- 3,000. The pI of the protein is 5.8 +/- 0.2. With methylene blue or ferricyanide as the electron acceptor (dyes such as methyl or benzyl viologen with negative midpoint potentials did not function), the enzyme had pH optima at pH 9.0 or 6.0, respectively, It has a temperature optimum at 65 to 70 degrees C, and the measured half-life for irreversible inactivation at 22 degrees C by 20% O2 was 20 min. The enzyme oxidizes H2 in the presence of an electron acceptor and also catalyzes the evolution of H2 from reduced methyl viologen; at the optimal pH of 3.5, 3.4 mumol of H2 was evolved (min X mg of protein)-1. The uptake hydrogenase catalyzes a slow deuterium-water exchange in the absence of an electron acceptor, and the highest rate was observed at pH 6.0. The Km values varied widely for different electron acceptors, whereas the Km for H2 remained virtually constant near 1 to 2 microM, independent of the electron acceptors.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams M. W., Mortenson L. E., Chen J. S. Hydrogenase. Biochim Biophys Acta. 1980 Dec;594(2-3):105–176. doi: 10.1016/0304-4173(80)90007-5. [DOI] [PubMed] [Google Scholar]
- Aggag M., Schlegel H. G. Studies on a gram-positive hydrogen bacterium, Nocardia opaca 1 b. III. Purification, stability and some properties of the soluble hydrogen dehydrogenase. Arch Microbiol. 1974;100(1):25–39. doi: 10.1007/BF00446303. [DOI] [PubMed] [Google Scholar]
- Arp D. J., Burris R. H. Purification and properties of the particulate hydrogenase from the bacteroids of soybean root nodules. Biochim Biophys Acta. 1979 Oct 11;570(2):221–230. doi: 10.1016/0005-2744(79)90142-6. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chen J. S., Mortenson L. E. Purification and properties of hydrogenase from Clostridium pasteurianum W5. Biochim Biophys Acta. 1974 Dec 18;371(2):283–298. doi: 10.1016/0005-2795(74)90025-7. [DOI] [PubMed] [Google Scholar]
- Eisbrenner G., Evans H. J. Spectral evidence for a component involved in hydrogen metabolism of soybean nodule bacteroids. Plant Physiol. 1982 Dec;70(6):1667–1672. doi: 10.1104/pp.70.6.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gitlitz P. H., Krasna A. I. Structural and catalytic properties of hydrogenase from Chromatium. Biochemistry. 1975 Jun 17;14(12):2561–2568. doi: 10.1021/bi00683a001. [DOI] [PubMed] [Google Scholar]
- HOCH G., KOK B. A mass spectrometer inlet system for sampling gases dissolved in liquid phases. Arch Biochem Biophys. 1963 Apr;101:160–170. doi: 10.1016/0003-9861(63)90546-0. [DOI] [PubMed] [Google Scholar]
- HYNDMAN L. A., BURRIS R. H., WILSON P. W. Properties of hydrogenase from Azotobacter vinelandii. J Bacteriol. 1953 May;65(5):522–531. doi: 10.1128/jb.65.5.522-531.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hageman R. V., Orme-Johnson W. H., Burris R. H. Role of magnesium adenosine 5'-triphosphate in the hydrogen evolution reaction catalyzed by nitrogenase from Azotobacter vinelandii. Biochemistry. 1980 May 27;19(11):2333–2342. doi: 10.1021/bi00552a009. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lalla-Maharajh W. V., Hall D. O., Cammack R., Rao K. K., Le Gall J. Purification and properties of the membrane-bound by hydrogenase from Desulfovibrio desulfuricans. Biochem J. 1983 Feb 1;209(2):445–454. doi: 10.1042/bj2090445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider K., Schlegel H. G. Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H 16. Biochim Biophys Acta. 1976 Nov 8;452(1):66–80. doi: 10.1016/0005-2744(76)90058-9. [DOI] [PubMed] [Google Scholar]
- Strandberg G. W., Wilson P. W. Formation of the nitrogen-fixing enzyme system in Azotobacter vinelandii. Can J Microbiol. 1968 Jan;14(1):25–31. doi: 10.1139/m68-005. [DOI] [PubMed] [Google Scholar]
- Walker C. C., Yates M. G. The hydrogen cycle in nitrogen-fixing Azotobacter chroococcum. Biochimie. 1978;60(3):225–231. doi: 10.1016/s0300-9084(78)80818-9. [DOI] [PubMed] [Google Scholar]
- Yagi T. Solubilization, purification and properties of particulate hydrogenase from Desulfovibrio vulgaris. J Biochem. 1970 Nov;68(5):649–657. doi: 10.1093/oxfordjournals.jbchem.a129398. [DOI] [PubMed] [Google Scholar]
- van der Westen H. M., Mayhew S. G., Veeger C. Separation of hydrogenase from intact cells of Desulfovibrio vulgaris. Purification and properties. FEBS Lett. 1978 Feb 1;86(1):122–126. doi: 10.1016/0014-5793(78)80112-4. [DOI] [PubMed] [Google Scholar]
