Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Aug;159(2):611–617. doi: 10.1128/jb.159.2.611-617.1984

Structure of the terminal reducing heptasaccharide of polysaccharide 1 isolated from the Bordetella pertussis endotoxin.

M Moreau, R Chaby, L Szabo
PMCID: PMC215687  PMID: 6086579

Abstract

The tetrasaccharide beta-D-glucopyranosyl-(1,3)-beta-D-glucopyranuronyl-(1, 2)-L-glycero-alpha-D-manno-heptopyranosyl-(1,5)-3-deoxy-D-manno-2- octulosonic acid was isolated after treatment of polysaccharide 1 of Bordetella pertussis endotoxin with nitrous acid. Taking into account previously identified di- and trisaccharide fragments and analytical data obtained for the intact polysaccharide 1, we present the structure of a heptasaccharide that is thought to represent the region immediately adjacent to the hydrophobic (lipid A) moiety of lipopolysaccharide 1 of the B. pertussis endotoxin. This heptasaccharide represents 50 to 60% of the complete polysaccharide structure.

Full text

PDF
611

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chaby R., Moreau M., Szabó L. 2-O-(beta-D-glucuronyl)-7-O-(2-amino-2-deoxy-alpha-D-glucopyranosyl)-L-glycero-D-manno-heptose: a constituent of the Bordetella pertussis endotoxin. Eur J Biochem. 1977 Jun 15;76(2):453–460. doi: 10.1111/j.1432-1033.1977.tb11615.x. [DOI] [PubMed] [Google Scholar]
  2. Chaby R., Szabó L. 3-Deoxy-2-octulosonic acid 5-phosphate: a component of the endotoxin of Bordetella pertussis. Eur J Biochem. 1975 Nov 1;59(1):277–280. doi: 10.1111/j.1432-1033.1975.tb02452.x. [DOI] [PubMed] [Google Scholar]
  3. Chaby R., Szabó L. 7-O-(2-Amino-2-deoxy-alpha-D-glucopyranosyl)-L-glycero-D-manno-heptose. A constituent of the endotoxin of Bordetella pertussis. Eur J Biochem. 1976 Nov 1;70(1):115–122. doi: 10.1111/j.1432-1033.1976.tb10962.x. [DOI] [PubMed] [Google Scholar]
  4. Cohen R. E., Ballou C. E. Linkage and sequence analysis of mannose-rich glycoprotein core oligosaccharides by proton nuclear magnetic resonance spectroscopy. Biochemistry. 1980 Sep 2;19(18):4345–4358. doi: 10.1021/bi00559a031. [DOI] [PubMed] [Google Scholar]
  5. Fuller N. A., Wu M., Wilkinson R. G., Heath E. C. The biosynthesis of cell wall lipopolysaccharide in Escherichia coli. VII. Characterization of heterogeneous "core" oligosaccharide structures. J Biol Chem. 1973 Nov 25;248(22):7938–7950. [PubMed] [Google Scholar]
  6. Gahan L. C., Sandford P. A., Conrad H. E. The structure of the serotype 2 capsular polysaccharide of Aerobacter aerogenes. Biochemistry. 1967 Sep;6(9):2755–2767. doi: 10.1021/bi00861a016. [DOI] [PubMed] [Google Scholar]
  7. Girard R., Chaby R., Bordenave G. Mitogenic response of C3H/HeJ mouse lymphocytes to polyanionic polysaccharides obtained from Bordetella pertussis endotoxin and from other bacterial species. Infect Immun. 1981 Jan;31(1):122–128. doi: 10.1128/iai.31.1.122-128.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HAKOMORI S. A RAPID PERMETHYLATION OF GLYCOLIPID, AND POLYSACCHARIDE CATALYZED BY METHYLSULFINYL CARBANION IN DIMETHYL SULFOXIDE. J Biochem. 1964 Feb;55:205–208. [PubMed] [Google Scholar]
  9. Haeffner-Cavaillon N., Cavaillon J. M., Moreau M., Szabó L. Interleukin 1 secretion by human monocytes stimulated by the isolated polysaccharide region of the Bordetella pertussis endotoxin. Mol Immunol. 1984 May;21(5):389–395. doi: 10.1016/0161-5890(84)90036-1. [DOI] [PubMed] [Google Scholar]
  10. Haeffner-Cavaillon N., Cavaillon J. M., Szabo L. Macrophage-dependent polyclonal activation of splenocytes by Bordetella pertussis endotoxin and its isolated polysaccharide and Lipid A regions. Cell Immunol. 1982 Nov 15;74(1):1–13. doi: 10.1016/0008-8749(82)90001-6. [DOI] [PubMed] [Google Scholar]
  11. Haeffner-Cavaillon N., Chaby R., Cavaillon J. M., Szabó L. Lipopolysaccharide receptor on rabbit peritoneal macrophages. I. Binding characteristics. J Immunol. 1982 May;128(5):1950–1954. [PubMed] [Google Scholar]
  12. Katzenellenbogen E., Romanowska E. Structural studies on Shigella flexneri serotype 6 core region. Eur J Biochem. 1980 Dec;113(1):205–211. doi: 10.1111/j.1432-1033.1980.tb06157.x. [DOI] [PubMed] [Google Scholar]
  13. Le Dur A., Caroff M., Chaby R., Szabó L. A novel type of endotoxin structure present in Bordetella pertussis. Isolation of two different polysaccharides bound to lipid A. Eur J Biochem. 1978 Mar 15;84(2):579–589. doi: 10.1111/j.1432-1033.1978.tb12201.x. [DOI] [PubMed] [Google Scholar]
  14. Le Dur A., Chaby R., Szabó L. Isolation of two protein-free and chemically different lipopolysaccharides from Bordetella pertussis phenol-extracted endotoxin. J Bacteriol. 1980 Jul;143(1):78–88. doi: 10.1128/jb.143.1.78-88.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Levvy G. A., Hay A. J., Conchie J. Inhibition of glycosidases by aldonolactones of corresponding configuration. 4. Inhibitors of mannosidase and glucosidase. Biochem J. 1964 May;91(2):378–384. doi: 10.1042/bj0910378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MACGEE J., DOUDOROFF M. A new phosphorylated intermediate in glucose oxidation. J Biol Chem. 1954 Oct;210(2):617–626. [PubMed] [Google Scholar]
  17. Mayer H., Schmidt G. The occurrence of three different lipopolysaccharide cores in shigella and their relationship to known enterobacterial core types. Zentralbl Bakteriol Orig A. 1973 Aug;224(3):345–354. [PubMed] [Google Scholar]
  18. Moreau M., Chaby R., Szabo L. Isolation of a trisaccharide containing 2-amino-2-deoxy-D-galacturonic acid from the Bordetella pertussis endotoxin. J Bacteriol. 1982 Apr;150(1):27–35. doi: 10.1128/jb.150.1.27-35.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Neal D. J., Wilkinson S. G. Lipopolysaccharides from Pseudomonas maltophilia. Structural studies of the side-chain, core, and lipid-A regions of the lipopolysaccharide from strain NCTC 10257. Eur J Biochem. 1982 Nov;128(1):143–149. [PubMed] [Google Scholar]
  20. Peppler M. S. Two physically and serologically distinct lipopolysaccharide profiles in strains of Bordetella pertussis and their phenotype variants. Infect Immun. 1984 Jan;43(1):224–232. doi: 10.1128/iai.43.1.224-232.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
  22. Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
  23. WEISSBACH A., HURWITZ J. The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. I. Identification. J Biol Chem. 1959 Apr;234(4):705–709. [PubMed] [Google Scholar]
  24. van Halbeek H., Dorland L., Vliegenthart J. F., Spik G., Cheron A., Mohtreuil J. Structure determination of two oligomannoside-type glycopeptides obtained from bovine lactotransferrin, by 500 MHz 1H-NMR spectroscopy. Biochim Biophys Acta. 1981 Jul;675(2):293–296. doi: 10.1016/0304-4165(81)90240-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES