Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Sep;159(3):1013–1017. doi: 10.1128/jb.159.3.1013-1017.1984

Expression of kinase-dependent glucose uptake in Saccharomyces cerevisiae.

L F Bisson, D G Fraenkel
PMCID: PMC215761  PMID: 6384176

Abstract

There are both low- and high-affinity mechanisms for uptake of glucose in Saccharomyces cerevisiae; high-affinity uptake somehow depends on the presence of hexose kinases (L. F. Bisson and D. G. Fraenkel, Proc. Natl. Acad. Sci. U.S.A. 80:1730-1734, 1983; L. F. Bisson and D. G. Fraenkel, J. Bacteriol. 155:995-1000, 1983). We report here on the effect of culture conditions on the level of high-affinity uptake. The high-affinity component was low during growth in high concentrations of glucose (100 mM), increased as glucose was exhausted from the medium, and decreased again during prolonged incubation in the stationary phase. The higher level of uptake was found in growth on low concentrations of glucose (0.5 mM) and in growth on normal concentrations of galactose, lactate plus glycerol, or ethanol. These results suggest that some component of high-affinity uptake is repressible by glucose. A shift from medium with 100 mM glucose to medium with 5 mM glucose resulted in up to a 10-fold increase in the level of high-affinity uptake within 90 min; the increase did not occur in the presence of cycloheximide or 2,4-dinitrophenol or in buffer alone with low glucose, suggesting that protein synthesis or energy metabolism (or both) was required. Reimposition of the high glucose concentration caused loss of high-affinity uptake, a process not prevented by cycloheximide. The use of hexokinase single-gene mutants showed that the derepression of high-affinity uptake was not clearly correlated with changes in levels of the kinases themselves. These results place the phenomenon of high- and low-affinity uptake in a physiological context, in that high-affinity uptake seems to be expressed best in conditions where it might be needed. Apparent similarities between glucose uptake in yeast and animal cells are noted.

Full text

PDF
1013

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bisson L. F., Fraenkel D. G. Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1730–1734. doi: 10.1073/pnas.80.6.1730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bisson L. F., Fraenkel D. G. Transport of 6-deoxyglucose in Saccharomyces cerevisiae. J Bacteriol. 1983 Sep;155(3):995–1000. doi: 10.1128/jb.155.3.995-1000.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bustamante E., Pedersen P. L. High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3735–3739. doi: 10.1073/pnas.74.9.3735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CIRILLO V. P. Mechanism of glucose transport across the yeast cell membrane. J Bacteriol. 1962 Sep;84:485–491. doi: 10.1128/jb.84.3.485-491.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Christopher C. W., Colby W. W., Ullrey D. Derepression and carrier turnover: evidence for two distinct mechanisms of hexose transport regulation in animal cells. J Cell Physiol. 1976 Dec;89(4):683–692. doi: 10.1002/jcp.1040890427. [DOI] [PubMed] [Google Scholar]
  6. Christopher C. W., Kohlbacher M. S., Amos H. Transport of sugars in chick-embryo fibroblasts. Evidence for a low-affinity system and a high-affinity system for glucose transport. Biochem J. 1976 Aug 15;158(2):439–450. doi: 10.1042/bj1580439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davidova S. Y., Shapot V. S., Solowjeva A. A. Hexokinase activity and glycolytic capacity of plasma membranes of hepatomas. Biochim Biophys Acta. 1968 May;158(2):303–305. doi: 10.1016/0304-4165(68)90149-9. [DOI] [PubMed] [Google Scholar]
  8. Emmelot P., Bos C. J. Differences in the association of two glycolytic enzymes with plasma membranes isolated from rat liver and hepatoma. Biochim Biophys Acta. 1966 Jun 29;121(2):434–436. doi: 10.1016/0304-4165(66)90140-1. [DOI] [PubMed] [Google Scholar]
  9. Entian K. D., Mecke D. Genetic evidence for a role of hexokinase isozyme PII in carbon catabolite repression in Saccharomyces cerevisiae. J Biol Chem. 1982 Jan 25;257(2):870–874. [PubMed] [Google Scholar]
  10. Fiek C., Benz R., Roos N., Brdiczka D. Evidence for identity between the hexokinase-binding protein and the mitochondrial porin in the outer membrane of rat liver mitochondria. Biochim Biophys Acta. 1982 Jun 14;688(2):429–440. doi: 10.1016/0005-2736(82)90354-6. [DOI] [PubMed] [Google Scholar]
  11. Heredia C. F., Sols A., DelaFuente G. Specificity of the constitutive hexose transport in yeast. Eur J Biochem. 1968 Aug;5(3):321–329. doi: 10.1111/j.1432-1033.1968.tb00373.x. [DOI] [PubMed] [Google Scholar]
  12. Kang Y. H., Coe E. L. Glucose 6-phosphate-dependent binding of hexokinase to membranes of ascites tumor cells. Biochim Biophys Acta. 1976 Dec 2;455(2):315–321. doi: 10.1016/0005-2736(76)90307-2. [DOI] [PubMed] [Google Scholar]
  13. Katzen H. M., Soderman D. D., Wiley C. E. Multiple forms of hexokinase. Activities associated with subcellular particulate and soluble fractions of normal and streptozotocin diabetic rat tissues. J Biol Chem. 1970 Aug 25;245(16):4081–4096. [PubMed] [Google Scholar]
  14. Kono T. Actions of insulin on glucose transport and cAMP phosphodiesterase in fat cells: involvement of two distinct molecular mechanisms. Recent Prog Horm Res. 1983;39:519–557. doi: 10.1016/b978-0-12-571139-5.50017-3. [DOI] [PubMed] [Google Scholar]
  15. Kotyk A. Properties of the sugar carrier in baker's yeast. II. Specificity of transport. Folia Microbiol (Praha) 1967;12(2):121–131. doi: 10.1007/BF02896872. [DOI] [PubMed] [Google Scholar]
  16. Martineau R., Kohlbacher M., Shaw S. N., Amos H. Enhancement of hexose entry into chick fibroblasts by starvation: differential effect on galactose and glucose. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3407–3411. doi: 10.1073/pnas.69.11.3407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Matern H., Holzer H. Catabolite inactivation of the galactose uptake system in yeast. J Biol Chem. 1977 Sep 25;252(18):6399–6402. [PubMed] [Google Scholar]
  18. Michels C. A., Hahnenberger K. M., Sylvestre Y. Pleiotropic mutations regulating resistance to glucose repression in Saccharomyces carlsbergensis are allelic to the structural gene for hexokinase B. J Bacteriol. 1983 Jan;153(1):574–578. doi: 10.1128/jb.153.1.574-578.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rose I. A., Warms J. V. Mitochondrial hexokinase. Release, rebinding, and location. J Biol Chem. 1967 Apr 10;242(7):1635–1645. [PubMed] [Google Scholar]
  20. Scarborough G. A. Sugar transport in Neurospora crassa. II. A second glucose transport system. J Biol Chem. 1970 Aug 10;245(15):3985–3987. [PubMed] [Google Scholar]
  21. Schneider R. P., Wiley W. R. Kinetic characteristics of the two glucose transport systems in Neurospora crassa. J Bacteriol. 1971 May;106(2):479–486. doi: 10.1128/jb.106.2.479-486.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Serrano R., Delafuente G. Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae. Mol Cell Biochem. 1974 Dec 20;5(3):161–171. doi: 10.1007/BF01731379. [DOI] [PubMed] [Google Scholar]
  23. Yamada K., Tillotson L. G., Isselbacher K. J. Regulation of hexose carriers in chicken embryo fibroblasts. Effect of glucose starvation and role of protein synthesis. J Biol Chem. 1983 Aug 25;258(16):9786–9792. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES