Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Dec;160(3):935–942. doi: 10.1128/jb.160.3.935-942.1984

Analysis of initiation of sites of cell wall growth in Streptococcus faecium during a nutritional shift.

C W Gibson, L Daneo-Moore, M L Higgins
PMCID: PMC215799  PMID: 6150028

Abstract

Three-dimensional reconstruction methods were applied to electron micrographs of Streptococcus faecium to study the initiation of cell wall growth sites during a nutritional shift experiment. Upon lowering the mass doubling time from 76 to 33 min by the addition of excess glutamate, the formation of new cell wall growth sites accelerated above the old steady-state rate at about the same time (10 to 15 min) as did mass, RNA, protein, cell numbers, and autolytic capacity but considerably before DNA (30 min) and peptidoglycan (20 min) synthesis did. During the shift, the average range of cell volumes over which new wall growth sites were introduced did not change significantly. However, upon the shift there was an increase in the frequency of cells having new sites, which was due to the faster-growing cells initiating more new sites in peripheral locations before division. After a transition period, the number of new sites per milliliter of culture increased at a rate that paralleled that of the culture mass. These findings support a model in which new sites are introduced when cells grow to a relatively constant, growth rate-independent size, while the rate at which sites form and grow increases with the growth rate. In this model, chromosome synthesis does not regulate the formation of new sites of cell wall growth, but existing sites cannot be completed until rounds of chromosome synthesis are completed.

Full text

PDF
935

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldea M., Herrero E., Esteve M. I., Guerrero R. Surface density of major outer membrane proteins in Salmonella typhimurium in different growth conditions. J Gen Microbiol. 1980 Oct;120(2):355–367. doi: 10.1099/00221287-120-2-355. [DOI] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boothby D., Daneo-Moore L., Shockman G. D. A rapid, guantitative, and selective estimation of radioactively labeled peptidoglycan in gram-positive bacteria. Anal Biochem. 1971 Dec;44(2):645–653. doi: 10.1016/0003-2697(71)90255-7. [DOI] [PubMed] [Google Scholar]
  4. Cooper S., Helmstetter C. E. Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol. 1968 Feb 14;31(3):519–540. doi: 10.1016/0022-2836(68)90425-7. [DOI] [PubMed] [Google Scholar]
  5. Donachie W. D., Begg K. J., Vicente M. Cell length, cell growth and cell division. Nature. 1976 Nov 25;264(5584):328–333. doi: 10.1038/264328a0. [DOI] [PubMed] [Google Scholar]
  6. Edelstein E. M., Rosenzweig M. S., Daneo-Moore L., Higgins M. L. Unit cell hypothesis for Streptococcus faecalis. J Bacteriol. 1980 Jul;143(1):499–505. doi: 10.1128/jb.143.1.499-505.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibson C. W., Daneo-Moore L., Higgins M. L. Cell wall assembly during inhibition of DNA synthesis in Streptococcus faecium. J Bacteriol. 1983 Jul;155(1):351–356. doi: 10.1128/jb.155.1.351-356.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gibson C. W., Daneo-Moore L., Higgins M. L. Initiation of wall assembly sites in Streptococcus faecium. J Bacteriol. 1983 May;154(2):573–579. doi: 10.1128/jb.154.2.573-579.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Helmstetter C. E., Krajewski C. A. Initiation of chromosome replication in dnaA and dnaC mutants of Escherichia coli B/r F. J Bacteriol. 1982 Feb;149(2):685–693. doi: 10.1128/jb.149.2.685-693.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Helmstetter C., Cooper S., Pierucci O., Revelas E. On the bacterial life sequence. Cold Spring Harb Symp Quant Biol. 1968;33:809–822. doi: 10.1101/sqb.1968.033.01.093. [DOI] [PubMed] [Google Scholar]
  11. Hinks R. P., Daneo-Moore L., Shockman G. D. Approximation of the cell cycle in synchronized populations of Streptococcus faecium. J Bacteriol. 1978 Jun;134(3):1188–1191. doi: 10.1128/jb.134.3.1188-1191.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hinks R. P., Daneo-Moore L., Shockman G. D. Cellular autolytic activity in synchronized populations of Streptococcus faecium. J Bacteriol. 1978 Feb;133(2):822–829. doi: 10.1128/jb.133.2.822-829.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KJELDGAARD N. O., MAALOE O., SCHAECHTER M. The transition between different physiological states during balanced growth of Salmonella typhimurium. J Gen Microbiol. 1958 Dec;19(3):607–616. doi: 10.1099/00221287-19-3-607. [DOI] [PubMed] [Google Scholar]
  14. Koch A. L., Higgins M. L. Control of wall band splitting in Streptococcus faecalis. J Gen Microbiol. 1984 Apr;130(4):735–745. doi: 10.1099/00221287-130-4-735. [DOI] [PubMed] [Google Scholar]
  15. Koch A. L., Higgins M. L., Doyle R. J. Surface tension-like forces determine bacterial shapes: Streptococcus faecium. J Gen Microbiol. 1981 Mar;123(1):151–161. doi: 10.1099/00221287-123-1-151. [DOI] [PubMed] [Google Scholar]
  16. Loeb A., McGrath B. E., Navre J. M., Pierucci O. Cell division during nutritional upshifts of Escherichia coli. J Bacteriol. 1978 Nov;136(2):631–637. doi: 10.1128/jb.136.2.631-637.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. POWELL E. O. Growth rate and generation time of bacteria, with special reference to continuous culture. J Gen Microbiol. 1956 Dec;15(3):492–511. doi: 10.1099/00221287-15-3-492. [DOI] [PubMed] [Google Scholar]
  18. Pierucci O. Dimensions of Escherichia coli at various growth rates: model for envelope growth. J Bacteriol. 1978 Aug;135(2):559–574. doi: 10.1128/jb.135.2.559-574.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pooley H. M., Shockman G. D. Relationship between the location of autolysin, cell wall synthesis, and the development of resistance to cellular autolysis in Streptococcus faecalis after inhibition of protein synthesis. J Bacteriol. 1970 Aug;103(2):457–466. doi: 10.1128/jb.103.2.457-466.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Roth G. S., Shockman G. D., Daneo-Moore L. Balanced macromolecular biosynthesis in "protoplasts" of Streptococcus faecalis. J Bacteriol. 1971 Mar;105(3):710–717. doi: 10.1128/jb.105.3.710-717.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SCHAECHTER M., MAALOE O., KJELDGAARD N. O. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J Gen Microbiol. 1958 Dec;19(3):592–606. doi: 10.1099/00221287-19-3-592. [DOI] [PubMed] [Google Scholar]
  22. Sargent M. G. Control of cell length in Bacillus subtilis. J Bacteriol. 1975 Jul;123(1):7–19. doi: 10.1128/jb.123.1.7-19.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sayare M., Daneo-Moore L., Shockman G. D. Influence of macromolecular biosynthesis on cellular autolysis in Streptococcus faecalis. J Bacteriol. 1972 Oct;112(1):337–344. doi: 10.1128/jb.112.1.337-344.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. TOENNIES G., ISZARD L., ROGERS N. B., SHOCKMAN G. D. Cell multiplication studied with an electronic particle counter. J Bacteriol. 1961 Dec;82:857–866. doi: 10.1128/jb.82.6.857-866.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Woldringh C. L., Grover N. B., Rosenberger R. F., Zaritsky A. Dimensional rearrangement of rod-shaped bacteria following nutritional shift-up. II. Experiments with Escherichia coli B/r. J Theor Biol. 1980 Oct 7;86(3):441–454. doi: 10.1016/0022-5193(80)90344-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES