Abstract
An inducible phosphoenolpyruvate:fructose phosphotransferase system has been detected in Azospirillum brasilense, which requires a minimum of two components of the crude extracts for activity: (i) a soluble fraction (enzyme I) and (ii) a membrane fraction (enzyme II). The uninduced cells neither show any uptake of fructose nor express activity of either of these two enzyme fractions. C-1 of fructose is the site of phosphorylation. This phosphotransferase system does not accept glucose as a substrate for phosphorylation.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brouwer M., Elferink M. G., Robillard G. T. Phosphoenolpyruvate-dependent fructose phosphotransferase system of Rhodopseudomonas sphaeroides: purification and physicochemical and immunochemical characterization of a membrane-associated enzyme I. Biochemistry. 1982 Jan 5;21(1):82–88. doi: 10.1021/bi00530a015. [DOI] [PubMed] [Google Scholar]
- DIETRICH C. P., DIETRICH S. M., PONTIS H. G. SEPARATION OF SUGAR PHOSPHATES AND SUGAR NUCLEOTIDES BY THIN-LAYER CHROMATOGRAPHY. J Chromatogr. 1964 Jul;15:277–278. doi: 10.1016/s0021-9673(01)82787-4. [DOI] [PubMed] [Google Scholar]
- Delobbe A., Chalumeau H., Claverie J. M., Gay P. Phosphorylation of intracellular fructose in Bacillus subtilis mediated by phosphoenolpyruvate-1-fructose phosphotransferase. Eur J Biochem. 1976 Jul 15;66(3):485–491. doi: 10.1111/j.1432-1033.1976.tb10573.x. [DOI] [PubMed] [Google Scholar]
- Dills S. S., Apperson A., Schmidt M. R., Saier M. H., Jr Carbohydrate transport in bacteria. Microbiol Rev. 1980 Sep;44(3):385–418. doi: 10.1128/mr.44.3.385-418.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durham D. R., Phibbs P. V., Jr Fractionation and characterization of the phosphoenolpyruvate: fructose 1-phosphotransferase system from Pseudomonas aeruginosa. J Bacteriol. 1982 Feb;149(2):534–541. doi: 10.1128/jb.149.2.534-541.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hylemon P. B., Krieg N. R., Phibbs P. V., Jr Transport and catabolism of D-fructose by Spirillum itersomii. J Bacteriol. 1974 Jan;117(1):144–150. doi: 10.1128/jb.117.1.144-150.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KUNDIG W., GHOSH S., ROSEMAN S. PHOSPHATE BOUND TO HISTIDINE IN A PROTEIN AS AN INTERMEDIATE IN A NOVEL PHOSPHO-TRANSFERASE SYSTEM. Proc Natl Acad Sci U S A. 1964 Oct;52:1067–1074. doi: 10.1073/pnas.52.4.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krieg N. R. Biology of the chemoheterotrophic spirilla. Bacteriol Rev. 1976 Mar;40(1):55–115. doi: 10.1128/br.40.1.55-115.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krieg N. R. Taxonomic studies of Spirillum lipoferum. Basic Life Sci. 1977;9:463–472. [PubMed] [Google Scholar]
- Novick N. J., Tyler M. E. L-arabinose metabolism in Azospirillum brasiliense. J Bacteriol. 1982 Jan;149(1):364–367. doi: 10.1128/jb.149.1.364-367.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okon Y., Albrecht S. L., Burris R. H. Factors affecting growth and nitrogen fixation of Spirillum lipoferum. J Bacteriol. 1976 Sep;127(3):1248–1254. doi: 10.1128/jb.127.3.1248-1254.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rauth S., Ghosh S. Effect of dimethylsulfoxide on derepression of nitrogenase in Spirillum lipoferum. FEBS Lett. 1981 Apr 6;126(1):77–80. doi: 10.1016/0014-5793(81)81037-x. [DOI] [PubMed] [Google Scholar]
- Saier M. H., Jr, Feucht B. U., Roseman S. Phosphoenolpyruvate-dependent fructose phosphorylation in photosynthetic bacteria. J Biol Chem. 1971 Dec 25;246(24):7819–7821. [PubMed] [Google Scholar]
- Sobel M. E., Krulwich T. A. Metabolism of D-fructose by Arthrobacter pyridinolis. J Bacteriol. 1973 Feb;113(2):907–913. doi: 10.1128/jb.113.2.907-913.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vasil I. K., Vasil V., Hubbell D. H. Engineered plant cell or fungal association with bacteria that fix nitrogen. Basic Life Sci. 1977;9:197–211. doi: 10.1007/978-1-4684-0880-5_14. [DOI] [PubMed] [Google Scholar]
- Von Bülow J. F., Döbereiner J. Potential for nitrogen fixation in maize genotypes in Brazil. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2389–2393. doi: 10.1073/pnas.72.6.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westby C. A., Cutshall D. S., Vigil G. V. Metabolism of various carbon sources by Azospirillum brasilense. J Bacteriol. 1983 Dec;156(3):1369–1372. doi: 10.1128/jb.156.3.1369-1372.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]