Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Dec;160(3):1204–1206. doi: 10.1128/jb.160.3.1204-1206.1984

Identification of a phosphoenolpyruvate:fructose 1-phosphotransferase system in Azospirillum brasilense.

K D Gupta, S Ghosh
PMCID: PMC215847  PMID: 6501230

Abstract

An inducible phosphoenolpyruvate:fructose phosphotransferase system has been detected in Azospirillum brasilense, which requires a minimum of two components of the crude extracts for activity: (i) a soluble fraction (enzyme I) and (ii) a membrane fraction (enzyme II). The uninduced cells neither show any uptake of fructose nor express activity of either of these two enzyme fractions. C-1 of fructose is the site of phosphorylation. This phosphotransferase system does not accept glucose as a substrate for phosphorylation.

Full text

PDF
1204

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brouwer M., Elferink M. G., Robillard G. T. Phosphoenolpyruvate-dependent fructose phosphotransferase system of Rhodopseudomonas sphaeroides: purification and physicochemical and immunochemical characterization of a membrane-associated enzyme I. Biochemistry. 1982 Jan 5;21(1):82–88. doi: 10.1021/bi00530a015. [DOI] [PubMed] [Google Scholar]
  2. DIETRICH C. P., DIETRICH S. M., PONTIS H. G. SEPARATION OF SUGAR PHOSPHATES AND SUGAR NUCLEOTIDES BY THIN-LAYER CHROMATOGRAPHY. J Chromatogr. 1964 Jul;15:277–278. doi: 10.1016/s0021-9673(01)82787-4. [DOI] [PubMed] [Google Scholar]
  3. Delobbe A., Chalumeau H., Claverie J. M., Gay P. Phosphorylation of intracellular fructose in Bacillus subtilis mediated by phosphoenolpyruvate-1-fructose phosphotransferase. Eur J Biochem. 1976 Jul 15;66(3):485–491. doi: 10.1111/j.1432-1033.1976.tb10573.x. [DOI] [PubMed] [Google Scholar]
  4. Dills S. S., Apperson A., Schmidt M. R., Saier M. H., Jr Carbohydrate transport in bacteria. Microbiol Rev. 1980 Sep;44(3):385–418. doi: 10.1128/mr.44.3.385-418.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Durham D. R., Phibbs P. V., Jr Fractionation and characterization of the phosphoenolpyruvate: fructose 1-phosphotransferase system from Pseudomonas aeruginosa. J Bacteriol. 1982 Feb;149(2):534–541. doi: 10.1128/jb.149.2.534-541.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hylemon P. B., Krieg N. R., Phibbs P. V., Jr Transport and catabolism of D-fructose by Spirillum itersomii. J Bacteriol. 1974 Jan;117(1):144–150. doi: 10.1128/jb.117.1.144-150.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KUNDIG W., GHOSH S., ROSEMAN S. PHOSPHATE BOUND TO HISTIDINE IN A PROTEIN AS AN INTERMEDIATE IN A NOVEL PHOSPHO-TRANSFERASE SYSTEM. Proc Natl Acad Sci U S A. 1964 Oct;52:1067–1074. doi: 10.1073/pnas.52.4.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Krieg N. R. Biology of the chemoheterotrophic spirilla. Bacteriol Rev. 1976 Mar;40(1):55–115. doi: 10.1128/br.40.1.55-115.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Krieg N. R. Taxonomic studies of Spirillum lipoferum. Basic Life Sci. 1977;9:463–472. [PubMed] [Google Scholar]
  10. Novick N. J., Tyler M. E. L-arabinose metabolism in Azospirillum brasiliense. J Bacteriol. 1982 Jan;149(1):364–367. doi: 10.1128/jb.149.1.364-367.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Okon Y., Albrecht S. L., Burris R. H. Factors affecting growth and nitrogen fixation of Spirillum lipoferum. J Bacteriol. 1976 Sep;127(3):1248–1254. doi: 10.1128/jb.127.3.1248-1254.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rauth S., Ghosh S. Effect of dimethylsulfoxide on derepression of nitrogenase in Spirillum lipoferum. FEBS Lett. 1981 Apr 6;126(1):77–80. doi: 10.1016/0014-5793(81)81037-x. [DOI] [PubMed] [Google Scholar]
  13. Saier M. H., Jr, Feucht B. U., Roseman S. Phosphoenolpyruvate-dependent fructose phosphorylation in photosynthetic bacteria. J Biol Chem. 1971 Dec 25;246(24):7819–7821. [PubMed] [Google Scholar]
  14. Sobel M. E., Krulwich T. A. Metabolism of D-fructose by Arthrobacter pyridinolis. J Bacteriol. 1973 Feb;113(2):907–913. doi: 10.1128/jb.113.2.907-913.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Vasil I. K., Vasil V., Hubbell D. H. Engineered plant cell or fungal association with bacteria that fix nitrogen. Basic Life Sci. 1977;9:197–211. doi: 10.1007/978-1-4684-0880-5_14. [DOI] [PubMed] [Google Scholar]
  16. Von Bülow J. F., Döbereiner J. Potential for nitrogen fixation in maize genotypes in Brazil. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2389–2393. doi: 10.1073/pnas.72.6.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Westby C. A., Cutshall D. S., Vigil G. V. Metabolism of various carbon sources by Azospirillum brasilense. J Bacteriol. 1983 Dec;156(3):1369–1372. doi: 10.1128/jb.156.3.1369-1372.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES