Abstract
A strain of Penicillium notatum unable to metabolize inorganic sulfate can accumulate sulfate internally to an apparent equilibrium concentration 10(5) greater than that remaining in the medium. The apparent Keq is near constant at all initial external sulfate concentrations below that which would eventually exceed the internal capacity of the cells. Under equilibrium conditions of zero net flux, external 35SO42- exchanges with internal, unlabeled SO42- at a rate consistent with the kinetic constants with the sulfate transport system. Efflux experiments demonstrated that sulfate occupies two distinct intracellular pools. Pool 1 is characterized by the rapid release of 35SO42- when the suspension of preloaded cells is adjusted to 10 mM azide at pH 8.4 (t 1/2, 0.38 min). 35SO42- in pool 1 also rapidly exchanges with unlabeled medium sulfate. Pool 2 is characterized by the slow release of 35SO42- induced by azide at pH 8.4 or unlabeled sulfate (t 1/2, 32 to 49 min). Early in the 35SO42- accumulation process, up to 78% of the total transported substrate is found in pool 1. At equilibrium, pool 1 accounts for only about 2% of the total accumulated 35SO42-. The kinetics of 35SO42- accumulation is consistent with the following sequential process: medium----pool 1----pool 2. Monensin (33 microns) accelerates the transfer of 35SO42- from pool 1 to pool 2. Valinomycin (0.2 microM) and tetraphenylboron- (1 mM) retard the transfer of 35SO42- from pool 1 to pool 2. At the concentrations used, neither of the ionophores nor tetraphenylboron- affect total 35SO42- uptake. Pool 2 may reside in a vacuole or other intracellular organelle. A model for the transfer of sulfate from pool 1 to pool 2 is presented.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bellenger N., Nissen P., Wood T. C., Segel I. H. Specificity and control of choline-O-sulfate transport in filamentous fungi. J Bacteriol. 1968 Nov;96(5):1574–1585. doi: 10.1128/jb.96.5.1574-1585.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowman E. J., Bowman B. J. Identification and properties of an ATPase in vacuolar membranes of Neurospora crassa. J Bacteriol. 1982 Sep;151(3):1326–1337. doi: 10.1128/jb.151.3.1326-1337.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradfield G., Somerfield P., Meyn T., Holby M., Babcock D., Bradley D., Segel I. H. Regulation of sulfate transport in filamentous fungi. Plant Physiol. 1970 Nov;46(5):720–727. doi: 10.1104/pp.46.5.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Builder S. E., Segel I. H. Equilibrium ligand binding assays using labeled substrates: nature of the errors introduced by radiochemical impurities. Anal Biochem. 1978 Apr;85(2):413–424. doi: 10.1016/0003-2697(78)90237-3. [DOI] [PubMed] [Google Scholar]
- Chandler C. J., Segel I. H. Mechanism of the antimicrobial action of pyrithione: effects on membrane transport, ATP levels, and protein synthesis. Antimicrob Agents Chemother. 1978 Jul;14(1):60–68. doi: 10.1128/aac.14.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cram J. Characteristics of sulfate transport across plasmalemma and tonoplast of carrot root cells. Plant Physiol. 1983 May;72(1):204–211. doi: 10.1104/pp.72.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cramer C. L., Vaughn L. E., Davis R. H. Basic amino acids and inorganic polyphosphates in Neurospora crassa: independent regulation of vacuolar pools. J Bacteriol. 1980 Jun;142(3):945–952. doi: 10.1128/jb.142.3.945-952.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuppoletti J., Segel I. H. Kinetics of sulfate transport by Penicillium notatum. Interactions of sulfate, protons, and calcium. Biochemistry. 1975 Oct 21;14(21):4712–4718. doi: 10.1021/bi00692a023. [DOI] [PubMed] [Google Scholar]
- Cuppoletti J., Segel I. H. Transinhibition kinetics of the sulfate transport system of Penicillium notatum: analysis based on an iso uni uni velocity equation. J Membr Biol. 1974 Jul 12;17(3):239–252. doi: 10.1007/BF01870185. [DOI] [PubMed] [Google Scholar]
- Datko A. H., Mudd S. H. Sulfate Uptake and Its Regulation in Lemna paucicostata Hegelm. 6746. Plant Physiol. 1984 Jun;75(2):466–473. doi: 10.1104/pp.75.2.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drainas C., Weiss R. L. Energetics of vacuolar compartmentation of arginine in Neurospora crassa. J Bacteriol. 1982 May;150(2):770–778. doi: 10.1128/jb.150.2.770-778.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farley J. R., Mayer S., Chandler C. J., Segel I. H. ATP sulfurylase from Penicillium chrysogenum: is the internal level of the enzyme sufficient to account for the rate of sulfate utilization? J Bacteriol. 1979 Jan;137(1):350–356. doi: 10.1128/jb.137.1.350-356.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grinius L. L., Jasaitis A. A., Kadziauskas Y. P., Liberman E. A., Skulachev V. P., Topali V. P., Tsofina L. M., Vladimirova M. A. Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles. Biochim Biophys Acta. 1970 Aug 4;216(1):1–12. doi: 10.1016/0005-2728(70)90153-2. [DOI] [PubMed] [Google Scholar]
- Harold F. M., Altendorf K. H., Hirata H. Probing membrane transport mechanisms with inophores. Ann N Y Acad Sci. 1974 May 10;235(0):149–160. doi: 10.1111/j.1749-6632.1974.tb43264.x. [DOI] [PubMed] [Google Scholar]
- Harold F. M., Baarda J. R. Inhibition of membrane transport in Streptococcus faecalis by uncouplers of oxidative phosphorylation and its relationship to proton conduction. J Bacteriol. 1968 Dec;96(6):2025–2034. doi: 10.1128/jb.96.6.2025-2034.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunter D. R., Segel I. H. Effect of weak acids on amino acid transport by Penicillium chrysogenum: evidence for a proton or charge gradient as the driving force. J Bacteriol. 1973 Mar;113(3):1184–1192. doi: 10.1128/jb.113.3.1184-1192.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaczorowski G. J., Kaback H. R. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 1. Effect of pH on efflux, exchange, and counterflow. Biochemistry. 1979 Aug 21;18(17):3691–3697. doi: 10.1021/bi00584a009. [DOI] [PubMed] [Google Scholar]
- Marzluf G. A. Regulation of sulfate transport in neurospora by transinhibition and by inositol depletion. Arch Biochem Biophys. 1973 May;156(1):244–254. doi: 10.1016/0003-9861(73)90362-7. [DOI] [PubMed] [Google Scholar]
- Marzluf G. A. Uptake and efflux of sulfate in Neurospora crassa. Biochim Biophys Acta. 1974 Mar 29;339(3):374–381. doi: 10.1016/0005-2736(74)90164-3. [DOI] [PubMed] [Google Scholar]
- McClintock M., Higinbotham N., Uribe E. G., Cleland R. E. Active, Irreversible Accumulation of Extreme Levels of H(2)SO(4) in the Brown Alga, Desmarestia. Plant Physiol. 1982 Sep;70(3):771–774. doi: 10.1104/pp.70.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell P. Performance and conservation of osmotic work by proton-coupled solute porter systems. J Bioenerg. 1973 Jan;4(1):63–91. doi: 10.1007/BF01516051. [DOI] [PubMed] [Google Scholar]
- Pressman B. C. Biological applications of ionophores. Annu Rev Biochem. 1976;45:501–530. doi: 10.1146/annurev.bi.45.070176.002441. [DOI] [PubMed] [Google Scholar]
- Roberts K. R., Marzluf G. A. The specific interaction of chromate with the dual sulfate permease systems of Neurospora crassa. Arch Biochem Biophys. 1971 Feb;142(2):651–659. doi: 10.1016/0003-9861(71)90531-5. [DOI] [PubMed] [Google Scholar]
- Roomans G. M., Kuypers G. A., Theuvenet A. P., Borst-Pauwels G. W. Kinetics of sulfate uptake by yeast. Biochim Biophys Acta. 1979 Feb 20;551(1):197–206. doi: 10.1016/0005-2736(79)90365-1. [DOI] [PubMed] [Google Scholar]
- SEGAL I. H., JOHNSON M. J. Hydrolysis of choline-O-sulfate by cell-free extracts from Penicillium. Biochim Biophys Acta. 1963 Feb 5;69:433–434. doi: 10.1016/0006-3002(63)91287-3. [DOI] [PubMed] [Google Scholar]
- Scarborough G. A. Proton translocation catalyzed by the electrogenic ATPase in the plasma membrane of Neurospora. Biochemistry. 1980 Jun 24;19(13):2925–2931. doi: 10.1021/bi00554a017. [DOI] [PubMed] [Google Scholar]
- Slayman C. L., Long W. S., Lu C. Y. The relationship between ATP and an electrogenic pump in the plasma membrane of Neurospora crassa. J Membr Biol. 1973;14(4):305–338. doi: 10.1007/BF01868083. [DOI] [PubMed] [Google Scholar]
- Slayman C. L., Slayman C. W. Depolarization of the plasma membrane of Neurospora during active transport of glucose: evidence for a proton-dependent cotransport system. Proc Natl Acad Sci U S A. 1974 May;71(5):1935–1939. doi: 10.1073/pnas.71.5.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith I. K. Compartmentation of Sulfur Metabolites in Tobacco Cells : USE OF EFFLUX ANALYSIS. Plant Physiol. 1981 Oct;68(4):937–940. doi: 10.1104/pp.68.4.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tweedie J. W., Segel I. H. Specificity of transport processes for sulfur, selenium, and molybdenum anions by filamentous fungi. Biochim Biophys Acta. 1970 Jan 6;196(1):95–106. doi: 10.1016/0005-2736(70)90170-7. [DOI] [PubMed] [Google Scholar]
- West I. C. Energy coupling in secondary active transport. Biochim Biophys Acta. 1980 May 27;604(1):91–126. doi: 10.1016/0005-2736(80)90586-6. [DOI] [PubMed] [Google Scholar]
- Yamamoto L. A., Segel I. H. The inorganic sulfate transport system of Penicillium chrysogenum. Arch Biochem Biophys. 1966 Jun;114(3):523–538. doi: 10.1016/0003-9861(66)90376-6. [DOI] [PubMed] [Google Scholar]