Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Jun;162(3):897–901. doi: 10.1128/jb.162.3.897-901.1985

Kinetic studies on formation of cytochrome oxidase of Rhodopseudomonas capsulata after a shift from phototrophic to chemotrophic growth.

H Hüdig, G Drews
PMCID: PMC215859  PMID: 2987193

Abstract

Rhodopseudomonas capsulata cells were shifted from phototrophic (anaerobic, light) to chemotrophic (semiaerobic, dark, 10% air saturation) growth conditions. During the adaptation period of 4 h, the bacteriochlorophyll content of cells and membranes decreased, and a newly synthesized 65-kilodalton polypeptide of the cytochrome oxidase was incorporated into the membrane fraction. The enzymatic activity of the cytochrome oxidase increased strongly after a lag time of 2 h. The amount of cytochrome oxidase protein does not follow the same kinetics. The relative amount of a membrane-bound cytochrome c of low molecular weight, which has been proposed to be a donor for the cytochrome oxidase, increased during adaptation.

Full text

PDF
897

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baccarini Melandri A., Zannoni D., Melandri B. A. Energy transduction in photosynthetic bacteria. VI. Respiratory sites of energy conservation in membranes from dark-grown cells of Rhodopseudomonas capsulata. Biochim Biophys Acta. 1973 Sep 26;314(3):298–311. doi: 10.1016/0005-2728(73)90114-x. [DOI] [PubMed] [Google Scholar]
  2. Drews G., Oelze J. Organization and differentiation of membranes of phototrophic bacteria. Adv Microb Physiol. 1981;22:1–92. doi: 10.1016/s0065-2911(08)60325-2. [DOI] [PubMed] [Google Scholar]
  3. Gabellini N., Bowyer J. R., Hurt E., Melandri B. A., Hauska G. A cytochrome b/c1 complex with ubiquinol--cytochrome c2 oxidoreductase activity from Rhodopseudomonas sphaeroides GA. Eur J Biochem. 1982 Aug;126(1):105–111. doi: 10.1111/j.1432-1033.1982.tb06753.x. [DOI] [PubMed] [Google Scholar]
  4. Gabellini N., Hauska G. Characterization of cytochrome b in the isolated ubiquinol-cytochrome c2 oxidoreductase from Rhodopseudomonas sphaeroides GA. FEBS Lett. 1983 Mar 7;153(1):146–150. doi: 10.1016/0014-5793(83)80136-7. [DOI] [PubMed] [Google Scholar]
  5. Garcia A. F., Drews G., Reidl H. H. Comparative studies of two membrane fractions isolated from chemotrophically and phototrophically grown cells of Rhodopseudomonas capsulata. J Bacteriol. 1981 Mar;145(3):1121–1128. doi: 10.1128/jb.145.3.1121-1128.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hawkes R., Niday E., Gordon J. A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem. 1982 Jan 1;119(1):142–147. doi: 10.1016/0003-2697(82)90677-7. [DOI] [PubMed] [Google Scholar]
  7. Hüdig H., Drews G. Characterization of a new membrane-bound cytochrome c of Rhodopseudomonas capsulata. FEBS Lett. 1983 Feb 21;152(2):251–255. doi: 10.1016/0014-5793(83)80390-1. [DOI] [PubMed] [Google Scholar]
  8. King M. T., Drews G. Isolation and partial characterization of the cytochrome oxidase from Rhodopseudomonas palustris. Eur J Biochem. 1976 Sep;68(1):5–12. doi: 10.1111/j.1432-1033.1976.tb10759.x. [DOI] [PubMed] [Google Scholar]
  9. Klemme J. H., Schlegel H. G. Untersuchungen zum Cytochrom-Oxydase-System aus anaerob im Licht und aerob im Dunkeln gewachsenen Zellen von Rhodopseudomonas capsulata. Arch Mikrobiol. 1969;68(4):326–354. [PubMed] [Google Scholar]
  10. Kranz R. G., Gennis R. B. Immunological characterization of the cytochrome o terminal oxidase from Escherichia coli. J Biol Chem. 1983 Sep 10;258(17):10614–10621. [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Oelze J., Drews G. Membranes of photosynthetic bacteria. Biochim Biophys Acta. 1972 Apr 18;265(2):209–239. doi: 10.1016/0304-4157(72)90003-2. [DOI] [PubMed] [Google Scholar]
  14. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Whale F. R., Jones O. T. The cytochrome system of heterotrophically-grown Rhodopseudomonas spheroides. Biochim Biophys Acta. 1970 Nov 3;223(1):146–157. doi: 10.1016/0005-2728(70)90139-8. [DOI] [PubMed] [Google Scholar]
  16. Wood P. M. Do photosynthetic bacteria contain cytochrome c1? Biochem J. 1980 Sep 1;189(3):385–391. doi: 10.1042/bj1890385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zannoni D., Melandri B. A., Baccarini-Melandri A. Energy transduction in photosynthetic bacteria. X. Composition and function of the branched oxidase system in wild type and respiration deficient mutants of Rhodopseudomonas capsulata. Biochim Biophys Acta. 1976 Mar 12;423(3):413–430. doi: 10.1016/0005-2728(76)90197-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES