Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Jun;162(3):1126–1134. doi: 10.1128/jb.162.3.1126-1134.1985

Fusion of liposomes and chromatophores of Rhodopseudomonas capsulata: effect on photosynthetic energy transfer between B875 and reaction center complexes.

J Y Takemoto, T Schonhardt, J R Golecki, G Drews
PMCID: PMC215893  PMID: 3997775

Abstract

The photosynthetic chromatophore membranes of Rhodopseudomonas capsulata were fused with liposomes to investigate the effects of lipid dilution on energy transfer between the bacteriochlorophyll-protein complexes of this membrane. Phosphatidylcholine-containing liposomes were mixed with chromatophores at pH 6.0 to 6.2, and the mixture was fractionated on discontinuous sucrose gradients into four membrane fractions with lipid-to-protein ratios that varied 11-fold. Freeze-fracture electron microscopy revealed that the fractions contained closed vesicles formed by the fusion of liposomes to chromatophores. Particles with 9-nm diameters on the P fracture faces did not appear to change in size with increasing lipid content, but the number of particles per membrane area decreased proportionally with increases in the lipid-to-protein ratio. The bacteriochlorophyll-to-protein ratios, electrophoretic polypeptide profiles on sodium dodecyl sulfate-polyacrylamide gels, and light-induced absorbance changes at 595 nm caused by photosynthetic reaction centers were not altered by fusion. The relative fluorescence emission intensities due to the B875 light-harvesting complex increased significantly with increasing lipid content, but no increases in fluorescence due to the B800-B850 light-harvesting complex were observed. Electron transport rates, measured as succinate-cytochrome c reductase activities, decreased with increased lipid content. The results indicate an uncoupling of energy transfer between the B875 light-harvesting and reaction center complexes with lipid dilution of the chromatophore membrane.

Full text

PDF
1126

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames G. F. Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J Bacteriol. 1968 Mar;95(3):833–843. doi: 10.1128/jb.95.3.833-843.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bachmann R. C., Gillies K., Takemoto J. Y. Membrane topography of the photosynthetic reaction center polypeptides of Rhodopseudomonas sphaeroides. Biochemistry. 1981 Aug 4;20(16):4590–4596. doi: 10.1021/bi00519a012. [DOI] [PubMed] [Google Scholar]
  3. Casadio R., Venturoli G., Di Gioia A., Castellani P., Leonardi L., Melandri B. A. Phospholipid-enriched bacterial chromatophores. A system suited to investigate the ubiquinone-mediated interactions of protein complexes in photosynthetic oxidoreduction processes. J Biol Chem. 1984 Jul 25;259(14):9149–9157. [PubMed] [Google Scholar]
  4. Drews G., Oelze J. Organization and differentiation of membranes of phototrophic bacteria. Adv Microb Physiol. 1981;22:1–92. doi: 10.1016/s0065-2911(08)60325-2. [DOI] [PubMed] [Google Scholar]
  5. Feick R., van Grondelle R., Rijgersberg C. P., Drews G. Fluorescence emission by wild-type- and mutant-strains of Rhodopseudomonas capsulata. Biochim Biophys Acta. 1980 Dec 3;593(2):241–253. doi: 10.1016/0005-2728(80)90062-6. [DOI] [PubMed] [Google Scholar]
  6. Golecki J. R., Schumacher A., Drews G. The differentiation of the photosynthetic apparatus and the intracytoplasmic membrane in cells of Rhodopseudomonas capsulata upon variation of light intensity. Eur J Cell Biol. 1980 Dec;23(1):1–5. [PubMed] [Google Scholar]
  7. Golecki J., Drews G., Bühler R. The size and number of intramembrane particles in cells of the photosynthetic bacterium Rhodopseudomonas capsulata studied by freeze-fracture electron microscopy. Cytobiologie. 1979 Feb;18(3):381–389. [PubMed] [Google Scholar]
  8. Heathcote P., Clayton R. K. Reconstituted energy transfer from antenna pigment-protein to reaction centres isolated from Rhodopseudomonas sphaeroides. Biochim Biophys Acta. 1977 Mar 11;459(3):506–515. doi: 10.1016/0005-2728(77)90049-4. [DOI] [PubMed] [Google Scholar]
  9. Hunter C. N., van Grondelle R., Holmes N. G., Jones O. T. The reconstitution of energy transfer in membranes from a bacteriochlorophyll-less mutant of Rhodopseudomonas sphaeroides by addition of light-harvesting and reaction centre pigment-protein complexes. Biochim Biophys Acta. 1979 Dec 6;548(3):458–470. doi: 10.1016/0005-2728(79)90058-6. [DOI] [PubMed] [Google Scholar]
  10. Markwell J. P., Lascelles J. Membrane-bound, pyridine nucleotide-independent L-lactate dehydrogenase of Rhodopseudomonas sphaeroides. J Bacteriol. 1978 Feb;133(2):593–600. doi: 10.1128/jb.133.2.593-600.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  12. Monger T. G., Parson W. W. Singlet-triplet fusion in Rhodopseudomonas sphaeroides chromatophores. A probe of the organization of the photosynthetic apparatus. Biochim Biophys Acta. 1977 Jun 9;460(3):393–407. doi: 10.1016/0005-2728(77)90080-9. [DOI] [PubMed] [Google Scholar]
  13. Nelson B. D., Gellerfors P. Characterization and resolution of complex III from beef heart mitochondria. Methods Enzymol. 1978;53:80–91. doi: 10.1016/s0076-6879(78)53016-4. [DOI] [PubMed] [Google Scholar]
  14. Pradel J., Lavergne J., Moya I. Formation and development of photosynthetic units in repigmenting Rhodopseudomonas sphaeroides wild type and "Phofil" mutant strain. Biochim Biophys Acta. 1978 May 10;502(2):169–182. doi: 10.1016/0005-2728(78)90039-7. [DOI] [PubMed] [Google Scholar]
  15. Rivas E., Reiss-Husson F., le Maire M. Physicochemical properties of detergent-solubilized photochemical reaction centers from two strains of Rhodopseudomonas spheroides. Biochemistry. 1980 Jun 24;19(13):2943–2950. doi: 10.1021/bi00554a020. [DOI] [PubMed] [Google Scholar]
  16. Schneider H., Lemasters J. J., Höchli M., Hackenbrock C. R. Liposome-mitochondrial inner membrane fusion. Lateral diffusion of integral electron transfer components. J Biol Chem. 1980 Apr 25;255(8):3748–3756. [PubMed] [Google Scholar]
  17. Shiozawa J. A., Welte W., Hodapp N., Drews G. Studies on the size and composition of the isolated light-harvesting B800-850 pigment-protein complex of Rhodopseudomonas capsulata. Arch Biochem Biophys. 1982 Feb;213(2):473–485. doi: 10.1016/0003-9861(82)90573-2. [DOI] [PubMed] [Google Scholar]
  18. Siegel C. O., Jordan A. E., Miller K. R. Addition of lipid to the photosynthetic membrane: effects on membrane structure and energy transfer. J Cell Biol. 1981 Oct;91(1):113–125. doi: 10.1083/jcb.91.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Slooten L. Reaction center preparations of Rhodopseudomonas spheroides: energy transfer and structure. Biochim Biophys Acta. 1972 Feb 28;256(2):452–466. doi: 10.1016/0005-2728(72)90074-6. [DOI] [PubMed] [Google Scholar]
  20. Snozzi M., Crofts A. R. Electron transport in chromatophores from Rhodopseudomonas sphaeroides GA fused with liposomes. Biochim Biophys Acta. 1984 Aug 31;766(2):451–463. doi: 10.1016/0005-2728(84)90261-5. [DOI] [PubMed] [Google Scholar]
  21. Varga A. R., Staehelin L. A. Spatial differentiation in photosynthetic and non-photosynthetic membranes of Rhodopseudomonas palustris. J Bacteriol. 1983 Jun;154(3):1414–1430. doi: 10.1128/jb.154.3.1414-1430.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES