Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Jun;162(3):1250–1254. doi: 10.1128/jb.162.3.1250-1254.1985

Ultrastructural localization of dipicolinic acid in dormant spores of Bacillus subtilis by immunoelectron microscopy with colloidal gold particles.

S Kozuka, Y Yasuda, K Tochikubo
PMCID: PMC215911  PMID: 3922946

Abstract

The localization of dipicolinic acid in dormant spores of Bacillus subtilis was examined by an immunoelectron microscopy method with colloidal gold-immunoglobulin G complex. The colloidal gold particles were distributed mainly in the core regions of dormant spores and were not observed in those of germinated or autoclaved spores. This result clearly demonstrates that dipicolinic acid is localized in the cores of dormant spores.

Full text

PDF
1250

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Disque D. T., Vincent W. F. Production of antibody against conjugated dipicolinic acid (2,6 pyridine dicarboxylic acid). Appl Microbiol. 1969 May;17(5):771–772. doi: 10.1128/am.17.5.771-772.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Germaine G. R., Murrell W. G. Use of ultraviolet radiation to locate dipicolinic acid in Bacillus cereus spores. J Bacteriol. 1974 Apr;118(1):202–208. doi: 10.1128/jb.118.1.202-208.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HASHIMOTO T., BLACK S. H., GERHARDT P. Development of fine structure, thermostability, and dipicolinate during sporogenesis in a bacillus. Can J Microbiol. 1960 Apr;6:203–212. doi: 10.1139/m60-022. [DOI] [PubMed] [Google Scholar]
  4. HOLBERT P. E. An effective method of preparing sections of Bacillus polymyxa sporangia and spores for electron microscopy. J Biophys Biochem Cytol. 1960 Apr;7:373–376. doi: 10.1083/jcb.7.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hyatt M. T., Levinson H. S. Water vapor, aqueous ethyl alcohol, and heat activation of Bacillus megaterium spore germination. J Bacteriol. 1968 Jun;95(6):2090–2101. doi: 10.1128/jb.95.6.2090-2101.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. JANSSEN F. W., LUND A. J., ANDERSON L. E. Colorimetric assay for dipicolinic acid in bacterial spores. Science. 1958 Jan 3;127(3288):26–27. doi: 10.1126/science.127.3288.26. [DOI] [PubMed] [Google Scholar]
  7. KNAYSI G. FURTHER OBSERVATIONS ON THE SPODOGRAM OF BACILLUS CEREUS ENDOSPORE. J Bacteriol. 1965 Aug;90:453–455. doi: 10.1128/jb.90.2.453-455.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Koshikawa T., Beaman T. C., Pankratz H. S., Nakashio S., Corner T. R., Gerhardt P. Resistance, germination, and permeability correlates of Bacillus megaterium spores successively divested of integument layers. J Bacteriol. 1984 Aug;159(2):624–632. doi: 10.1128/jb.159.2.624-632.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kushida H., Kushida T. A new method for both light and electron microscopy of identical sites in semi-thin tissue sections embedded GMA, Quetol 523 and methyl methacrylate. J Electron Microsc (Tokyo) 1981;30(1):77–80. [PubMed] [Google Scholar]
  10. Leanz G., Gilvarg C. Dipicolinic acid location in intact spores of Bacillus megaterium. J Bacteriol. 1973 Apr;114(1):455–456. doi: 10.1128/jb.114.1.455-456.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nishihara T., Ichikawa T., Kondo M. Location of elements in ashed spores of Bacillus megaterium. Microbiol Immunol. 1980;24(6):495–506. doi: 10.1111/j.1348-0421.1980.tb02853.x. [DOI] [PubMed] [Google Scholar]
  12. Pearce S. M., Fitz-James P. C. Spore refractility in variants of Bacillus cereus treated with actinomycin D. J Bacteriol. 1971 Jul;107(1):337–344. doi: 10.1128/jb.107.1.337-344.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Scherrer R., Gerhardt P. Location of calcium within Bacillus spores by electron probe x-ray microanalysis. J Bacteriol. 1972 Oct;112(1):559–568. doi: 10.1128/jb.112.1.559-568.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Scott I. R., Ellar D. J. Study of calcium dipicolinate release during bacterial spore germination by using a new, sensitive assay for dipicolinate. J Bacteriol. 1978 Jul;135(1):133–137. doi: 10.1128/jb.135.1.133-137.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Short J. A., Walker P. D., Hine P., Thomson R. O. Immunocytochemical localization of spore specific antigens in ultrathin sections. J Appl Bacteriol. 1977 Aug;43(1):75–82. doi: 10.1111/j.1365-2672.1977.tb00724.x. [DOI] [PubMed] [Google Scholar]
  17. Stewart M., Somlyo A. P., Somlyo A. V., Shuman H., Lindsay J. A., Murrell W. G. Distribution of calcium and other elements in cryosectioned Bacillus cereus T spores, determined by high-resolution scanning electron probe x-ray microanalysis. J Bacteriol. 1980 Jul;143(1):481–491. doi: 10.1128/jb.143.1.481-491.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. THOMAS R. S. ULTRASTRUCTURAL LOCALIZATION OF MINERAL MATTER IN BACTERIAL SPORES BY MICRONINCINERATION. J Cell Biol. 1964 Oct;23:113–133. doi: 10.1083/jcb.23.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tinglu G., Ghosh A., Ghosh B. K. Subcellular localization of alkaline phosphatase in Bacillus licheniformis 749/C by immunoelectron microscopy with colloidal gold. J Bacteriol. 1984 Aug;159(2):668–677. doi: 10.1128/jb.159.2.668-677.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES