Abstract
We studied the incorporation of [1-13C]ribose and [1,3-13C2]glycerol into the riboflavin precursor 6,7-dimethyl-8-ribityllumazine, using a riboflavin-deficient mutant of Bacillus subtilis. The formation of the pyrazine ring requires the addition of a four-carbon moiety to a pyrimidine precursor. The results show that C-6 alpha, C-6, C-7, and C-7 alpha of 6,7-dimethyl-8-ribityllumazine were biosynthetically equivalent to C-1, C-2, C-3, and C-5 of a pentose phosphate. C-4 of the pentose precursor was lost through an intramolecular skeletal rearrangement. Thus, the last steps in the biosynthesis of 6,7-dimethyl-8-ribityllumazine apparently involve the same mechanism in bacteria as in fungi.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ali S. N., al-Khalidi U. A. The precursors of the xylene ring in riboflavine. Biochem J. 1966 Jan;98(1):182–188. doi: 10.1042/bj0980182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alworth W. L., Baker H. N., Winkler M. F., Keenan A. M. Biosynthesis of the 4,5-dimethyl-1,2-phenylene moiety of vitamin B12. Biochem Biophys Res Commun. 1970 Sep 10;40(5):1026–1031. doi: 10.1016/0006-291x(70)90896-x. [DOI] [PubMed] [Google Scholar]
- Alworth W. L., Dove M. F., Baker H. N. Biosynthesis of the dimethylbenzene moiety of riboflavin and dimethylbenzimidazole: evidence for the involvement of C-1 of a pentose as a precursor. Biochemistry. 1977 Feb 8;16(3):526–531. doi: 10.1021/bi00622a029. [DOI] [PubMed] [Google Scholar]
- Bacher A., Le Van Q., Keller P. J., Floss H. G. Biosynthesis of riboflavin. Incorporation of 13C-labeled precursors into the xylene ring. J Biol Chem. 1983 Nov 25;258(22):13431–13437. [PubMed] [Google Scholar]
- Bacher A., Mailänder B. Biosynthesis of riboflavin in Bacillus subtilis: function and genetic control of the riboflavin synthase complex. J Bacteriol. 1978 May;134(2):476–482. doi: 10.1128/jb.134.2.476-482.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beach R. L., Plaut G. W. Investigations of structures of substituted lumazines by deuterium exchange and nuclear magnetic resonance spectroscopy. Biochemistry. 1970 Feb 17;9(4):760–770. doi: 10.1021/bi00806a009. [DOI] [PubMed] [Google Scholar]
- Bresler S. E., Perumov D. A. Issledovanie operona biosinteza riboflavina u Bacillus subtilis. Vliianie genotipa na reguliatsiiu sinteza guanozin-5-trifosfattsiklogidrolazy. Genetika. 1979 Jun;15(6):967–971. [PubMed] [Google Scholar]
- Brown G. M., Williamson J. M. Biosynthesis of riboflavin, folic acid, thiamine, and pantothenic acid. Adv Enzymol Relat Areas Mol Biol. 1982;53:345–381. doi: 10.1002/9780470122983.ch9. [DOI] [PubMed] [Google Scholar]
- Bryn K., Stormer F. C. Decreased riboflavin formation in mutants of Aerobacter (Enterobacter) aerogenes deficient in the butanediol pathway. Biochim Biophys Acta. 1976 Mar 25;428(1):257–259. doi: 10.1016/0304-4165(76)90127-6. [DOI] [PubMed] [Google Scholar]
- KATAGIRI H., TAKEDA I., IMAI K. Synthesis of riboflavin by microorganisms. IV. The studies of 4-C-donor involved in the enzymatic riboflavin synthesis from 8-N-ribityl-6, 7-dimethyllumazine. J Vitaminol (Kyoto) 1958 Dec 10;4(4):278–284. [PubMed] [Google Scholar]
- Nielsen P., Neuberger G., Floss H. G., Bacher A. Biosynthesis of riboflavin. Enzymatic formation of the xylene moiety from [14C]ribulose 5-phosphate. Biochem Biophys Res Commun. 1984 Feb 14;118(3):814–820. doi: 10.1016/0006-291x(84)91467-0. [DOI] [PubMed] [Google Scholar]
- Pomerantseva M. D., Rafailov A. M. Mutagennyi effekt radiatsii u myshei, podvergshikhsia gamma-oblucheniiu v émbrional'nyi period. Soobshchenie III. Chastota mozaikov po okraske shersti sredi geterozigotnykh po retsessivnym mutatsiiam myshei, podvergshikhsia oblucheniiu v raznye sroki émbriogeneza. Genetika. 1976;12(11):83–86. [PubMed] [Google Scholar]
