Abstract
The evolution of alkaline phosphatase was studied in marine species of Vibrio. Two antisera prepared against purified alkaline phosphatases from Vibrio splendidus and Vibrio harveyi were used to estimate the amino acid sequence divergence of this enzyme in 51 strains belonging to nine species. The methods used were the quantitative microcomplement fixation technique and the Ouchterlony double-diffusion procedure. There was a high degree of congruence between the measurement of the amino acid sequence divergence of alkaline phosphatase and the percentage of deoxyribonucleic acid homology of the different organisms relative to both reference strains (correlation coefficient of -0.89) as well as between the amino acid sequence divergence of alkaline phosphatase and superoxide dismutase (correlation coefficient of 0.92) relative to V. splendidus. These findings supported the view that the evolution of marine species of Vibrio is primarily vertical and that horizontal evolution (involving genetic exchange between species), if significant, is restricted to a minor fraction of the bacterial genome.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bachmann B. J., Low K. B. Linkage map of Escherichia coli K-12, edition 6. Microbiol Rev. 1980 Mar;44(1):1–56. doi: 10.1128/mr.44.1.1-56.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baumann L., Baumann P. Regulation of aspartokinase activity in the genus Beneckea and marine, luminous bacteria. Arch Mikrobiol. 1973;90(3):171–188. doi: 10.1007/BF00424970. [DOI] [PubMed] [Google Scholar]
- Baumann L., Baumann P. Studies of relationship among terrestrial Pseudomonas, Alcaligenes, and enterobacteria by an immunological comparison of glutamine synthetase. Arch Microbiol. 1978 Oct 4;119(1):25–30. doi: 10.1007/BF00407923. [DOI] [PubMed] [Google Scholar]
- Baumann P., Baumann L. Biology of the marine enterobacteria: genera Beneckea and Photobacterium. Annu Rev Microbiol. 1977;31:39–61. doi: 10.1146/annurev.mi.31.100177.000351. [DOI] [PubMed] [Google Scholar]
- Brenna O., Perrella M., Pace M., Pietta P. G. Affinity-chromatography purification of alkaline phosphatase from calf intestine. Biochem J. 1975 Nov;151(2):291–296. doi: 10.1042/bj1510291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chakrabarty A. M. Plasmids in Pseudomonas. Annu Rev Genet. 1976;10:7–30. doi: 10.1146/annurev.ge.10.120176.000255. [DOI] [PubMed] [Google Scholar]
- Champion A. B., Barrett E. L., Palleroni N. J., Soderberg K. L., Kunisawa R., Contopoulou R., Wilson A. C., Doudoroff M. Evolution in Pseudomonas fluorescens. J Gen Microbiol. 1980 Oct;120(2):485–511. doi: 10.1099/00221287-120-2-485. [DOI] [PubMed] [Google Scholar]
- Champion A. B., Soderberg K. L., Wilson A. C. Immunological comparison of azurins of known amino acid sequence. Dependence of cross-reactivity upon sequence resemblance. J Mol Evol. 1975 Sep 8;5(4):291–305. doi: 10.1007/BF01732216. [DOI] [PubMed] [Google Scholar]
- Cocks G. T., Wilson A. C. Enzyme evolution in the Enterobacteriaceae. J Bacteriol. 1972 Jun;110(3):793–802. doi: 10.1128/jb.110.3.793-802.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
- GOMORI G. Alkaline phosphatase of cell nuclei. J Lab Clin Med. 1951 Apr;37(4):526–531. [PubMed] [Google Scholar]
- Gasser F., Gasser C. Immunological relationships among lactic dehydrogenases in the genera Lactobacillus and Leuconostoc. J Bacteriol. 1971 Apr;106(1):113–125. doi: 10.1128/jb.106.1.113-125.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi M., Unemoto T., Hayashi M. pH- and anion-dependent salt modifications of alkaline phosphatase from a slightly halophilic Vibrio alginolyticus. Biochim Biophys Acta. 1973 Jul 5;315(1):83–93. doi: 10.1016/0005-2744(73)90132-0. [DOI] [PubMed] [Google Scholar]
- Hedges R. W. The pattern of evolutionary change in bacteria. Heredity (Edinb) 1972 Feb;28(1):39–48. doi: 10.1038/hdy.1972.4. [DOI] [PubMed] [Google Scholar]
- Ibrahimi I. M., Prager E. M., White T. J., Wilson A. C. Amino acid sequence of California quail lysozyme. Effect of evolutionary substitutions on the antigenic structure of lysozyme. Biochemistry. 1979 Jun 26;18(13):2736–2744. doi: 10.1021/bi00580a008. [DOI] [PubMed] [Google Scholar]
- Kreuzer K., Pratt C., Torriani A. Genetic analysis of regulatory mutants of alkaline phosphatase of E. coli. Genetics. 1975 Nov;81(3):459–468. doi: 10.1093/genetics/81.3.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Landt M., Boltz S. C., Butler L. G. Alkaline phosphatase: affinity chromatography and inhibition by phosphonic acids. Biochemistry. 1978 Mar 7;17(5):915–919. doi: 10.1021/bi00598a027. [DOI] [PubMed] [Google Scholar]
- Reichelt J. L., Baumann P., Baumann L. Study of genetic relationships among marine species of the genera Beneckea and Photobacterium by means of in vitro DNA/DNA hybridization. Arch Microbiol. 1976 Oct 11;110(1):101–120. doi: 10.1007/BF00416975. [DOI] [PubMed] [Google Scholar]
- Reichelt J. L., Baumann P. Effect of sodium chloride on growth of heterotrophic marine bacteria. Arch Microbiol. 1974 May 20;97(4):329–345. doi: 10.1007/BF00403071. [DOI] [PubMed] [Google Scholar]
- Sanderson K. E. Genetic relatedness in the family Enterobacteriaceae. Annu Rev Microbiol. 1976;30:327–349. doi: 10.1146/annurev.mi.30.100176.001551. [DOI] [PubMed] [Google Scholar]
- Selander R. K., Levin B. R. Genetic diversity and structure in Escherichia coli populations. Science. 1980 Oct 31;210(4469):545–547. doi: 10.1126/science.6999623. [DOI] [PubMed] [Google Scholar]
- TORRIANI A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta. 1960 Mar 11;38:460–469. doi: 10.1016/0006-3002(60)91281-6. [DOI] [PubMed] [Google Scholar]
- Wilson A. C., Carlson S. S., White T. J. Biochemical evolution. Annu Rev Biochem. 1977;46:573–639. doi: 10.1146/annurev.bi.46.070177.003041. [DOI] [PubMed] [Google Scholar]