Abstract
Mutant strains SU1, SU4, and US1 lacking glutamate synthase (GOGAT) activity were isolated from strains of P. aeruginosa for which histidine is a growth rate-limiting source of nitrogen. Strains SU1 and SU4 were unable to grow when a low concentration of ammonia and a variety of compounds, including histidine, were supplied as sole sources of nitrogen. A revertant of strain SU1, strain 39, produced no GOGAT but high levels of nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase and had restored ability to grow on a limited number of nitrogen sources. Strain US1 grew at the same rate in histidine medium as did its parent; it was derepressed for glutamine synthase synthesis, and histidase was less sensitive to repression by ammonia than in the parent strain. We conclude that GOGAT is not essential for growth on histidine but high levels of glutamine synthase are required nd high levels of nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase can sustain growth at low concentrations of ammonia in the absence of GOGAT.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRAMMAR W. J., CLARKE P. H. INDUCTION AND REPRESSION OF PSEUDOMONAS AERUGINOSA AMIDASE. J Gen Microbiol. 1964 Dec;37:307–319. doi: 10.1099/00221287-37-3-307. [DOI] [PubMed] [Google Scholar]
- Berberich M. A. A glutamate-dependent phenotype in E. coli K12: the result of two mutations. Biochem Biophys Res Commun. 1972 Jun 28;47(6):1498–1503. doi: 10.1016/0006-291x(72)90242-2. [DOI] [PubMed] [Google Scholar]
- Brammar W. J., Clarke P. H., Skinner A. J. Biochemical and genetic studies with regulator mutants of the Pseudomonas aeruginosa 8602 amidase system. J Gen Microbiol. 1967 Apr;47(1):87–102. doi: 10.1099/00221287-47-1-87. [DOI] [PubMed] [Google Scholar]
- Brenchley J. E., Prival M. J., Magasanik B. Regulation of the synthesis of enzymes responsible for glutamate formation in Klebsiella aerogenes. J Biol Chem. 1973 Sep 10;248(17):6122–6128. [PubMed] [Google Scholar]
- Brown C. M., Macdonald-Brown D. S., Stanley S. O. The mechanisms of nitrogen assimilation in pseudomonads. Antonie Van Leeuwenhoek. 1973;39(1):89–98. doi: 10.1007/BF02578844. [DOI] [PubMed] [Google Scholar]
- Brown J. E., Brown P. R., Clarke P. H. Butyramide-utilizing mutants of Pseudomonas aeruginosa 8602 which produce an amidase with altered substrate specificity. J Gen Microbiol. 1969 Aug;57(2):273–285. doi: 10.1099/00221287-57-2-273. [DOI] [PubMed] [Google Scholar]
- Desphande K. L., Katze J. R., Kane J. F. Regulation of glutamate synthase from Bacillus subtilis by glutamine. Biochem Biophys Res Commun. 1980 Jul 16;95(1):55–60. doi: 10.1016/0006-291x(80)90703-2. [DOI] [PubMed] [Google Scholar]
- Gregoriou M., Brown P. R., Tata R. Pseudomonas aeruginosa mutants resistant to urea inhibition of growth on acetanilide. J Bacteriol. 1977 Nov;132(2):377–384. doi: 10.1128/jb.132.2.377-384.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartman S. C. Glutaminase of Escherichia coli. I. Purification and general catalytic properties. J Biol Chem. 1968 Mar 10;243(5):853–863. [PubMed] [Google Scholar]
- Janssen D. B., op den Camp H. J., Leenen P. J., van der Drift C. The enzymes of the ammonia assimilation in Pseudomonas aeruginosa. Arch Microbiol. 1980 Feb;124(2-3):197–203. doi: 10.1007/BF00427727. [DOI] [PubMed] [Google Scholar]
- KELLY M., CLARKE P. H. An inducible amidase produced by a strain of Pseudomonas aeruginosa. J Gen Microbiol. 1962 Feb;27:305–316. doi: 10.1099/00221287-27-2-305. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lessie T. G., Neidhardt F. C. Formation and operation of the histidine-degrading pathway in Pseudomonas aeruginosa. J Bacteriol. 1967 Jun;93(6):1800–1810. doi: 10.1128/jb.93.6.1800-1810.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mardashev S. R., Nikolaev A. Ia, Evseev L. P., Eremenko V. V. Induktsiia asparaginaznoi i gliutaminaznoi aktivnostei u Pseudomonas sp. asparaginovoi i gliutaminovoi kislotami. Biokhimiia. 1967 Sep-Oct;32(5):1093–1098. [PubMed] [Google Scholar]
- Meers J. L., Tempest D. W., Brown C. M. 'Glutamine(amide):2-oxoglutarate amino transferase oxido-reductase (NADP); an enzyme involved in the synthesis of glutamate by some bacteria. J Gen Microbiol. 1970 Dec;64(2):187–194. doi: 10.1099/00221287-64-2-187. [DOI] [PubMed] [Google Scholar]
- Miller R. E., Stadtman E. R. Glutamate synthase from Escherichia coli. An iron-sulfide flavoprotein. J Biol Chem. 1972 Nov 25;247(22):7407–7419. [PubMed] [Google Scholar]
- Nagatani H., Shimizu M., Valentine R. C. The mechanism of ammonia assimilation in nitrogen fixing Bacteria. Arch Mikrobiol. 1971;79(2):164–175. doi: 10.1007/BF00424923. [DOI] [PubMed] [Google Scholar]
- Pahel G., Zelenetz A. D., Tyler B. M. gltB gene and regulation of nitrogen metabolism by glutamine synthetase in Escherichia coli. J Bacteriol. 1978 Jan;133(1):139–148. doi: 10.1128/jb.133.1.139-148.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potts J. R., Clarke P. H. The effect of nitrogen limitation on catabolite repression of amidase, histidase and urocanase in Pseudomonas aeruginosa. J Gen Microbiol. 1976 Apr;93(2):377–387. doi: 10.1099/00221287-93-2-377. [DOI] [PubMed] [Google Scholar]
- Prival M. J., Brenchley J. E., Magasanik B. Glutamine synthetase and the regulation of histidase formation in Klebsiella aerogenes. J Biol Chem. 1973 Jun 25;248(12):4334–4344. [PubMed] [Google Scholar]
- Prival M. J., Magasanik B. Resistance to catabolite repression of histidase and proline oxidase during nitrogen-limited growth of Klebsiella aerogenes. J Biol Chem. 1971 Oct 25;246(20):6288–6296. [PubMed] [Google Scholar]
- Smith G. R., Halpern Y. S., Magasanik B. Genetic and metabolic control of enzymes responsible for histidine degradation in Salmonella typhimurium. 4-imidazolone-5-propionate amidohydrolase and N-formimino-L-glutamate formiminohydrolase. J Biol Chem. 1971 May 25;246(10):3320–3329. [PubMed] [Google Scholar]
- Smyth P. F., Clarke P. H. Catabolite repression of Pseudomonas aeruginosa amidase: the effect of carbon source on amidase synthesis. J Gen Microbiol. 1975 Sep;90(1):81–90. doi: 10.1099/00221287-90-1-81. [DOI] [PubMed] [Google Scholar]
- Stadtman E. R., Ginsburg A., Ciardi J. E., Yeh J., Hennig S. B., Shapiro B. M. Multiple molecular forms of glutamine synthetase produced by enzyme catalyzed adenylation and deadenylylation reactions. Adv Enzyme Regul. 1970;8:99–118. doi: 10.1016/0065-2571(70)90011-7. [DOI] [PubMed] [Google Scholar]
- Trotta P. P., Platzer K. E., Haschemeyer R. H., Meister A. Glutamine-binding subunit of glutamate synthase and partial reactions catalyzed by this glutamine amidotransferase. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4607–4611. doi: 10.1073/pnas.71.11.4607. [DOI] [PMC free article] [PubMed] [Google Scholar]