Abstract
Comparative mutagenesis and possible synergistic interaction between broad-spectrum (313- to 405-nm) near-ultraviolet (black light bulb [BLB]) radiation and 254-nm radiation were studied in Escherichia coli strains WP2 (wild type), WP2s (uvrA), WP10 (recA), WP6 (polA), WP6s (polA uvrA), WP100 (uvrA recA), and WP5 (lexA). With BLB radiation, strains WP2s and WP6s demonstrated a high level of mutagenesis, whereas strains WP2, WP5, WP6, WP10, and WP100 did not demonstrate significant mutagenesis. In contrast, 254-nm radiation was mutagenic in strains WP2, WP2s, WP6, and WP6s, but strains WP5, WP10, and WP100 were not significantly mutated. The absence of mutagenesis by BLB radiation in lexA and recA strains WP10, WP5, and WP100 suggests that lex+ rec+ repair may play a major role in mutagenesis by both BLB and 254-nm radiation. The hypothesis that BLB radiation selectively inhibits rec+ lex+ repair was tested by sequential BLB-254-nm radiation. With strain WP2, a fluence of 30 J/m2 at 254 nm induced trp+ revertants at a frequency of 15 X 10(-6). However, when 10(5) J/m2 or more of BLB radiation preceded the 254-nm exposure, no trp+ revertants could be detected. A similar inhibition of 254-nm mutagenesis was observed with strain WP6 (polA). However, strains WP2s (uvrA) and wP6s (polA uvrA) showed enhanced 254-nm mutagenesis when a prior exposure to BLB radiation was given.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson E. H. Growth Requirements of Virus-Resistant Mutants of Escherichia Coli Strain "B". Proc Natl Acad Sci U S A. 1946 May;32(5):120–128. doi: 10.1073/pnas.32.5.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashwood-Smith M. J., Copeland J., Wilcockson J. Sunlight and frozen bacteria. Nature. 1967 Apr 1;214(5083):33–35. doi: 10.1038/214033a0. [DOI] [PubMed] [Google Scholar]
- Bridges B. A., Dennis R. E., Munson R. J. Differential induction and repair of ultraviolet damage leading to true revesions and external suppressor mutations of an ochre codon in Escherichia coli B-r WP2. Genetics. 1967 Dec;57(4):897–908. doi: 10.1093/genetics/57.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bridges B. A., Law J., Munson R. J. Mutagenesis in Escherichia coli. II. Evidence for a common pathway for mutagenesis by ultraviolet light, ionizing radiation and thymine deprivation. Mol Gen Genet. 1968;103(3):266–273. doi: 10.1007/BF00273698. [DOI] [PubMed] [Google Scholar]
- Brown M. S., Webb R. B. Photoreactivation of 365 nm inactivation in Escherichia coli. Mutat Res. 1972 Jul;15(3):348–352. doi: 10.1016/0027-5107(72)90080-2. [DOI] [PubMed] [Google Scholar]
- Cabrera-Juarez E., Espinosa-Lara M. Lethal and mutagenic action of black light (325 to 400 nm) on Haemophilus influenzae in the presence of air. J Bacteriol. 1974 Mar;117(3):960–964. doi: 10.1128/jb.117.3.960-964.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenstark A. Mutagenic and lethal effects of visible and near-ultraviolet light on bacterial cells. Adv Genet. 1971;16:167–198. [PubMed] [Google Scholar]
- Green M. H., Muriel W. J. Mutagen testing using TRP+ reversion in Escherichia coli. Mutat Res. 1976 Feb;38(1):3–32. doi: 10.1016/0165-1161(76)90076-5. [DOI] [PubMed] [Google Scholar]
- Jagger J. Growth delay and photoprotection induced by near-ultraviolet light. Res Prog Org Biol Med Chem. 1972;3(Pt 1):383–401. [PubMed] [Google Scholar]
- Kubitschek H. E. Mutagenesis by near-visible light. Science. 1967 Mar 24;155(3769):1545–1546. doi: 10.1126/science.155.3769.1545. [DOI] [PubMed] [Google Scholar]
- Lakchaura B. D. Photoprotection from killing in ultraviolet-sensitive Escherichia coli K-12 mutants: involvement of excision-resynthesis repair. Photochem Photobiol. 1972 Sep;16(3):197–202. doi: 10.1111/j.1751-1097.1972.tb06291.x. [DOI] [PubMed] [Google Scholar]
- Peak M. J. Some observations on the lethal effects of near-ultraviolet light on Escherichia coli, compared with the lethal effects of far-ultraviolet light. Photochem Photobiol. 1970 Jul;12(1):1–8. doi: 10.1111/j.1751-1097.1970.tb06031.x. [DOI] [PubMed] [Google Scholar]
- Ramabhadran T. V. Effects of near-ultraviolet and violet radiations (313-405 nm) on DNA, RNA, and protein synthesis in E. coli B/r: implications for growth delay. Photochem Photobiol. 1975 Sep-Oct;22(3-4):117–123. doi: 10.1111/j.1751-1097.1975.tb08822.x. [DOI] [PubMed] [Google Scholar]
- Rupp W. D., Howard-Flanders P. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol. 1968 Jan 28;31(2):291–304. doi: 10.1016/0022-2836(68)90445-2. [DOI] [PubMed] [Google Scholar]
- Smith K. C. Multiple pathways of DNA repair in bacteria and their roles in mutagenesis. Photochem Photobiol. 1978 Aug;28(2):121–129. doi: 10.1111/j.1751-1097.1978.tb07688.x. [DOI] [PubMed] [Google Scholar]
- Tuveson R. W., Satterthwaite M. A. Comparison of ultraviolet and blacklight for the induction of nutritional independence at two loci in Neurospora crassa. Mutat Res. 1976 Aug;36(2):165–170. doi: 10.1016/0027-5107(76)90004-x. [DOI] [PubMed] [Google Scholar]
- Tyrrell R. M. Mutagenic interaction between near-(365 nm) and far-(254 nm)ultraviolet radiation in repair-proficient and excision-deficient strains of Escherichia coli. Mutat Res. 1978 Oct;52(1):25–35. doi: 10.1016/0027-5107(78)90092-1. [DOI] [PubMed] [Google Scholar]
- Tyrrell R. M., Webb R. B. Reduced dimer excision in bacteria following near ultraviolet (365 nm) radiation. Mutat Res. 1973 Sep;19(3):361–364. doi: 10.1016/0027-5107(73)90238-8. [DOI] [PubMed] [Google Scholar]
- Webb R. B., Brown M. S., Tyrrell R. M. Lethal effects of pyrimidine dimers induced at 365 nm in strains of E. coli differing in repair capability. Mutat Res. 1976 Nov;37(2-3):163–172. doi: 10.1016/0027-5107(76)90029-4. [DOI] [PubMed] [Google Scholar]
- Webb R. B., Brown M. S., Tyrrell R. M. Synergism between 365- and 254-nm radiations for inactivation of Escherichia coli. Radiat Res. 1978 May;74(2):298–311. [PubMed] [Google Scholar]
- Webb R. B., Lorenz J. R. Oxygen dependence and repair of lethal effects of near ultraviolet and visible light. Photochem Photobiol. 1970 Oct;12(4):283–289. doi: 10.1111/j.1751-1097.1970.tb06060.x. [DOI] [PubMed] [Google Scholar]
- Webb R. B., Malina M. M. Mutagenesis in Escherichia coli by visible light. Science. 1967 May 26;156(3778):1104–1105. doi: 10.1126/science.156.3778.1104. [DOI] [PubMed] [Google Scholar]
- Webb R. B., Malina M. M. Mutagenic effects of near ultraviolet and visible radiant energy on continuous cultures of escherichia coli. Photochem Photobiol. 1970 Dec;12(6):457–468. doi: 10.1111/j.1751-1097.1970.tb06078.x. [DOI] [PubMed] [Google Scholar]
- Webb R. B. Near-UV mutagenesis: photoreactivation of 365-nm-induced mutational lesions in Escherichia coli WP2s. J Bacteriol. 1978 Feb;133(2):860–866. doi: 10.1128/jb.133.2.860-866.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev. 1976 Dec;40(4):869–907. doi: 10.1128/br.40.4.869-907.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Witkin E. M. Ultraviolet-induced mutation and DNA repair. Annu Rev Microbiol. 1969;23:487–514. doi: 10.1146/annurev.mi.23.100169.002415. [DOI] [PubMed] [Google Scholar]
