Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Aug;147(2):418–426. doi: 10.1128/jb.147.2.418-426.1981

Carboxypeptidase S- and Carboxypeptidase Y-Deficient Mutants of Saccharomyces cerevisiae

Dieter H Wolf 1, Claudia Ehmann 1
PMCID: PMC216060  PMID: 7021530

Abstract

A new carboxypeptidase (carboxypeptidase S) was found in a Saccharomyces cerevisiae strain lacking carboxypeptidase Y (D. H. Wolf and U. Weiser, Eur. J. Biochem. 73:553-556, 1977). Mutants devoid of carboxypeptidase S activity were isolated from a mutant strain that was also deficient in carboxypeptidase Y. Four mutants were analyzed in detail and fell into one complementation group. The defect segregated 2:2 in meiotic tetrads. Gene dosage experiments indicated that the mutation might reside in the structural gene of carboxypeptidase S. The absence of both enzymes, carboxypeptidases Y and S, did not affect mitotic growth. Ascopore formation was only slightly affected by the absence of both carboxypeptidases. Protein degradation under conditions of nutrient deprivation and under sporulation conditions showed no obvious alteration in the absence of carboxypeptidases Y and S. When a proteinase B mutation, which led to the absence of proteinase B activity and resulted in the partial reduction of sporulation, was introduced into a mutant lacking both carboxypeptidases, the ability of diploid cells to sporulate was nearly completely lost. Mutants lacking both carboxypeptidases were unable to grow on the dipeptide benzyloxycarbonylglycyl-l-leucine as a sole nitrogen source, which indicates an additional function for carboxypeptidases Y and S in supplying nutrients from exogenous peptides. Catabolite inactivation of fructose-1,6-bisphosphatase, cytoplasmic malate dehydrogenase, and phosphoenolpyruvate carboxykinase and inactivation of nicotin-amide adenine dinucleotide phosphate-dependent, glutamate dehydrogenase, events which have been proposed to involve proteolysis in vivo, were not dependent on the presence of carboxypeptidase Y and S. In a mutant lacking both carboxypeptidases, four new proteolytic enzymes with carboxypeptidase activity were detected.

Full text

PDF
418

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achstetter T., Ehmann C., Wolf D. H. New proteolytic enzymes in yeast. Arch Biochem Biophys. 1981 Apr 1;207(2):445–454. doi: 10.1016/0003-9861(81)90052-7. [DOI] [PubMed] [Google Scholar]
  2. Betz H., Weisner U. Protein degradation and proteinases during yeast sporulation. Eur J Biochem. 1976 Feb 2;62(1):65–76. doi: 10.1111/j.1432-1033.1976.tb10098.x. [DOI] [PubMed] [Google Scholar]
  3. Ciejek E., Thorner J. Recovery of S. cerevisiae a cells from G1 arrest by alpha factor pheromone requires endopeptidase action. Cell. 1979 Nov;18(3):623–635. doi: 10.1016/0092-8674(79)90117-x. [DOI] [PubMed] [Google Scholar]
  4. Crandall M., Egel R., Mackay V. L. Physiology of mating in three yeasts. Adv Microb Physiol. 1977;15:307–398. doi: 10.1016/s0065-2911(08)60319-7. [DOI] [PubMed] [Google Scholar]
  5. Funayama S., Gancedo J. M., Gancedo C. Turnover of yeast fructose-bisphosphatase in different metabolic conditions. Eur J Biochem. 1980 Aug;109(1):61–66. doi: 10.1111/j.1432-1033.1980.tb04767.x. [DOI] [PubMed] [Google Scholar]
  6. Gancedo J. M., Gancedo C. Fructose-1,6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting and non fermenting yeasts. Arch Mikrobiol. 1971;76(2):132–138. doi: 10.1007/BF00411787. [DOI] [PubMed] [Google Scholar]
  7. Hansen R. J., Hinze H., Holzer H. Assay of phosphoenolpyruvate carboxykinase in crude yeast extracts. Anal Biochem. 1976 Aug;74(2):576–584. doi: 10.1016/0003-2697(76)90240-2. [DOI] [PubMed] [Google Scholar]
  8. Hayashi R. Carboxypeptidase Y. Methods Enzymol. 1976;45:568–587. doi: 10.1016/s0076-6879(76)45051-6. [DOI] [PubMed] [Google Scholar]
  9. Hemmings B. A. Evidence for the degradation of nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase of Candida utilis during rapid enzyme inactivation. J Bacteriol. 1978 Feb;133(2):867–877. doi: 10.1128/jb.133.2.867-877.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hemmings B. A., Zubenko G. S., Jones E. W. Proteolytic inactivation of the NADP-dependent glutamate dehydrogenase in proteinase-deficient mutants of Saccharomyces cerevisiae. Arch Biochem Biophys. 1980 Jul;202(2):657–660. doi: 10.1016/0003-9861(80)90475-0. [DOI] [PubMed] [Google Scholar]
  11. Hilger F., Culot M., Minet M., Pierard A., Grenson M., Wiame J. M. Studies on the kinetics of the enzyme sequence mediating arginine synthesis in Saccharomyces cerevisiae. J Gen Microbiol. 1973 Mar;75(1):33–41. doi: 10.1099/00221287-75-1-33. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Lenney J. F. Three yeast proteins that specifically inhibit yeast proteases A, B, and C. J Bacteriol. 1975 Jun;122(3):1265–1273. doi: 10.1128/jb.122.3.1265-1273.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lenz A. G., Holzer H. Rapid reversible inactivation of fructose-1,6-bisphosphatase in Saccharomyces cerivisiae by glucose. FEBS Lett. 1980 Jan 14;109(2):271–274. doi: 10.1016/0014-5793(80)81103-3. [DOI] [PubMed] [Google Scholar]
  15. MCDONALD C. E., CHEN L. L. THE LOWRY MODIFICATION OF THE FOLIN REAGENT FOR DETERMINATION OF PROTEINASE ACTIVITY. Anal Biochem. 1965 Jan;10:175–177. doi: 10.1016/0003-2697(65)90255-1. [DOI] [PubMed] [Google Scholar]
  16. Mazón M. J. Effect of glucose starvation on the nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase of yeast. J Bacteriol. 1978 Feb;133(2):780–785. doi: 10.1128/jb.133.2.780-785.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mazón M. J., Hemmings B. A. Regulation of Saccharomyces cerevisiae nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase by proteolysis during carbon starvation. J Bacteriol. 1979 Aug;139(2):686–689. doi: 10.1128/jb.139.2.686-689.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Müller M., Müller H., Holzer H. Immunochemical studies on catabolite inactivation of phosphoenolpyruvate carboxykinase in Saccharomyces cerevisiae. J Biol Chem. 1981 Jan 25;256(2):723–727. [PubMed] [Google Scholar]
  19. Neeff J., Hägele E., Nauhaus J., Heer U., Mecke D. Evidence for catabolite degradation in the glucose-dependent inactivation of yeast cytoplasmic malate dehydrogenase. Eur J Biochem. 1978 Jul 3;87(3):489–495. doi: 10.1111/j.1432-1033.1978.tb12399.x. [DOI] [PubMed] [Google Scholar]
  20. Saheki T., Holzer H. Comparisons of the tryptophan synthase inactivating enzymes with proteinases from yeast. Eur J Biochem. 1974 Mar 1;42(2):621–626. doi: 10.1111/j.1432-1033.1974.tb03377.x. [DOI] [PubMed] [Google Scholar]
  21. Saheki T., Matsuda Y., Holzer H. Urification and characterization of macromolecular inhibitors of proteinase A from yeast. Eur J Biochem. 1974 Sep 1;47(2):325–332. doi: 10.1111/j.1432-1033.1974.tb03697.x. [DOI] [PubMed] [Google Scholar]
  22. Scherer G., Haag G., Duntze W. Mechanism of alpha factor biosynthesis in Saccharomyces cerevisiae. J Bacteriol. 1974 Aug;119(2):386–393. doi: 10.1128/jb.119.2.386-393.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ulane R. E., Cabib E. The activating system of chitin synthetase from Saccharomyces cerevisiae. Purification and properties of the activating factor. J Biol Chem. 1976 Jun 10;251(11):3367–3374. [PubMed] [Google Scholar]
  24. WOLFE R. G., NEILANDS J. B. Some molecular and kinetic properties of heart malic dehydrogenase. J Biol Chem. 1956 Jul;221(1):61–69. [PubMed] [Google Scholar]
  25. Wolf D. H. Control of metabolism in yeast and other lower eukaryotes through action of proteinases. Adv Microb Physiol. 1980;21:267–338. doi: 10.1016/s0065-2911(08)60358-6. [DOI] [PubMed] [Google Scholar]
  26. Wolf D. H., Ehmann C. Carboxypetidase S from yeast: regulation of its activity during vegetative growth and differentiation. FEBS Lett. 1978 Jul 1;91(1):59–62. doi: 10.1016/0014-5793(78)80017-9. [DOI] [PubMed] [Google Scholar]
  27. Wolf D. H., Ehmann C. Studies on a proteinase B mutant of yeast. Eur J Biochem. 1979 Aug 1;98(2):375–384. doi: 10.1111/j.1432-1033.1979.tb13197.x. [DOI] [PubMed] [Google Scholar]
  28. Wolf D. H., Fink G. R. Proteinase C (carboxypeptidase Y) mutant of yeast. J Bacteriol. 1975 Sep;123(3):1150–1156. doi: 10.1128/jb.123.3.1150-1156.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wolf D. H., Weiser U. Studies on a carboxypeptidase Y mutant of yeast and evidence for a second carboxypeptidase Activity. Eur J Biochem. 1977 Mar 1;73(2):553–556. doi: 10.1111/j.1432-1033.1977.tb11350.x. [DOI] [PubMed] [Google Scholar]
  30. Zimmermann F. K., Schmiedt I., ten Berge A. M. Dominance and recessiveness at the protein level in mutant x wildtype crosses in Sacchaomyces cerevisiae. Mol Gen Genet. 1969 Aug 15;104(4):321–330. doi: 10.1007/BF00334231. [DOI] [PubMed] [Google Scholar]
  31. Zubenko G. S., Jones E. W. Catabolite inactivation of gluconeogenic enzymes in mutants of yeast deficient in proteinase B. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4581–4585. doi: 10.1073/pnas.76.9.4581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zubenko G. S., Mitchell A. P., Jones E. W. Septum formation, cell division, and sporulation in mutants of yeast deficient in proteinase B. Proc Natl Acad Sci U S A. 1979 May;76(5):2395–2399. doi: 10.1073/pnas.76.5.2395. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES