Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Aug;147(2):427–431. doi: 10.1128/jb.147.2.427-431.1981

Bacitracin and protease production in relation to sporulation during exponential growth of Bacillus licheniformis on poorly utilized carbon and nitrogen sources.

G W Hanlon, N A Hodges
PMCID: PMC216061  PMID: 7021531

Abstract

Growth of Bacillus licheniformis in a chemically defined medium containing glucose and ammonium chloride yielded a doubling time of 1.00 h. Examination of the culture during exponential growth revealed a lack of heat-resistant spores together with a complete absence of detectable concentrations of bacitracin or extracellular serine protease. Replacement of glucose as the sole carbon source by glycerol, pyruvic acid, citric acid, or lactic acid resulted in doubling times of 1.13, 2.00, 3.16, and 3.95 h, respectively. Bacitracin, protease, and heat-resistant spores were produced during exponential growth in amounts related to these doubling times. A qualitatively similar pattern was observed when ammonium chloride was replaced by sodium nitrate, alanine, or glutamic acid which gave doubling times of 1.65, 1.77, and 1.90 h, respectively. Protease, but not bacitracin, concentrations were substantially higher when the growth rate was restricted by use of poor nitrogen rather than poor carbon sources. The relationships between bacitracin production, protease production, and the sporulation process are discussed.

Full text

PDF
427

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Haavik H. I. Studies on the formation of bacitracin by Bacillus licheniformis: role of catabolite repression and organic acids. J Gen Microbiol. 1974 Oct;84(2):321–326. doi: 10.1099/00221287-84-2-321. [DOI] [PubMed] [Google Scholar]
  2. Haavik H. I., Thomassen S. A bacitracin-negative mutant of Bacillus licheniformis which is able to sporulate. J Gen Microbiol. 1973 Jun;76(2):451–454. doi: 10.1099/00221287-76-2-451. [DOI] [PubMed] [Google Scholar]
  3. Jayaraman K., Kannan R. The role of polypeptide antibiotics on the bacterial differentiation. Biochem Biophys Res Commun. 1972 Sep 5;48(5):1235–1239. doi: 10.1016/0006-291x(72)90843-1. [DOI] [PubMed] [Google Scholar]
  4. Kambe M., Imae Y., Kurahashi K. Biochemical studies on gramicidin S non-producing mutants of Bacillus brevis ATCC 9999. J Biochem. 1974 Mar;75(3):481–493. doi: 10.1093/oxfordjournals.jbchem.a130417. [DOI] [PubMed] [Google Scholar]
  5. Laishley E. J., Bernlohr R. W. Regulation of arginine and proline catabolism in Bacillus licheniformis. J Bacteriol. 1968 Aug;96(2):322–329. doi: 10.1128/jb.96.2.322-329.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Martin J. F., Demain A. L. Control of antibiotic biosynthesis. Microbiol Rev. 1980 Jun;44(2):230–251. doi: 10.1128/mr.44.2.230-251.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Matteo C. C., Cooney C. L., Demain A. L. Production of gramicidin S synthetases by Bacillus brevis in continuous culture. J Gen Microbiol. 1976 Oct;96(2):415–422. doi: 10.1099/00221287-96-2-415. [DOI] [PubMed] [Google Scholar]
  8. Michel J. F., Millet J. Physiological studies on early-blocked sporulation mutants of Bacillus subtilis. J Appl Bacteriol. 1970 Mar;33(1):220–227. doi: 10.1111/j.1365-2672.1970.tb05246.x. [DOI] [PubMed] [Google Scholar]
  9. Millet J. Characterization of proteinases excreted by Bacillus subtilis Marburg strain during sporulation. J Appl Bacteriol. 1970 Mar;33(1):207–219. doi: 10.1111/j.1365-2672.1970.tb05245.x. [DOI] [PubMed] [Google Scholar]
  10. Prestidge L., Gage V., Spizizen J. Protease activities during the course of sporulation on Bacillus subtilis. J Bacteriol. 1971 Sep;107(3):815–823. doi: 10.1128/jb.107.3.815-823.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Priest F. G. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev. 1977 Sep;41(3):711–753. doi: 10.1128/br.41.3.711-753.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sarkar N., Paulus H. Function of peptide antibiotics in sporulation. Nat New Biol. 1972 Oct 25;239(95):228–230. doi: 10.1038/newbio239228a0. [DOI] [PubMed] [Google Scholar]
  13. Schaeffer P. Asporogenous mutants of Bacillus subtilis Marburg. Folia Microbiol (Praha) 1967;12(3):291–296. doi: 10.1007/BF02868746. [DOI] [PubMed] [Google Scholar]
  14. Schaeffer P., Millet J., Aubert J. P. Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A. 1965 Sep;54(3):704–711. doi: 10.1073/pnas.54.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schaeffer P. Sporulation and the production of antibiotics, exoenzymes, and exotonins. Bacteriol Rev. 1969 Mar;33(1):48–71. doi: 10.1128/br.33.1.48-71.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES