Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Nov;148(2):480–486. doi: 10.1128/jb.148.2.480-486.1981

Sporulation in Bacillus subtilis is independent of membrane fatty acid composition.

D P Boudreaux, E Freese
PMCID: PMC216230  PMID: 6795180

Abstract

Growth and sporulation of a Bacillus subtilis mutant deficient in branched fatty acid synthesis (gene symbol bfmB) were examined. The mutant, which produces an acyl-coenzyme A:acyl carrier protein transacylase with reduced affinity for branched fatty acid primers, could grow in media containing any one of a wide range of low-molecular-weight fatty acids having branched, cyclic, saturated, or unsaturated carbon chains. The fatty acid composition of cellular lipids depended on the compound used to support growth. Cultures of the bfmB mutant grown in the presence of 3-methylcrotonate contained an unusually high fraction (73%) of straight-chain fatty acids in the cellular lipids. The mutant sporulated with any one of the precursors of branched fatty acids in the medium; isolated spores contained mainly this branched fatty acid and only 10% or less straight-chain fatty acids regardless of the straight-chain fatty acid content of vegetative cells. Exceptional were spores grown in the presence of cyclobutane-carboxylic acid, which contained 28% straight-chain fatty acids. The branched fatty acid composition of spores could be modified greatly by changing the supply of precursors in the medium.

Full text

PDF
480

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blume A., Dreher R., Poralla K. The influence of branched-chain and omega-alicyclic fatty acids on the transition temperature of bacillus subtilis lipids. Biochim Biophys Acta. 1978 Oct 4;512(3):489–494. doi: 10.1016/0005-2736(78)90159-1. [DOI] [PubMed] [Google Scholar]
  2. Boudreaux D. P., Eisenstadt E., Iijima T., Freese E. Biochemical and genetic characterization of an auxotroph of Bacillus subtilis altered in the Acyl-CoA:acyl-carrier-protein transacylase. Eur J Biochem. 1981 Mar 16;115(1):175–181. doi: 10.1111/j.1432-1033.1981.tb06214.x. [DOI] [PubMed] [Google Scholar]
  3. Butterworth P. H., Bloch K. Comparative aspects of fatty acid synthesis in Bacillus subtilis and Escherichia coli. Eur J Biochem. 1970 Feb;12(3):496–501. doi: 10.1111/j.1432-1033.1970.tb00878.x. [DOI] [PubMed] [Google Scholar]
  4. Dreher R., Poralla K., König W. A. Synthesis of omega-alicyclic fatty acids from cyclic precursors in Bacillus subtilis. J Bacteriol. 1976 Sep;127(3):1136–1140. doi: 10.1128/jb.127.3.1136-1140.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Heefner D. L., Claus G. W. Lipid and fatty acid composition of Gluconobacter oxydans before and after intracytoplasmic membrane formation. J Bacteriol. 1978 Apr;134(1):38–47. doi: 10.1128/jb.134.1.38-47.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ishihara H., Nagano H., Nishihara T., Kondo M. [Studies on lipids of spore-forming bacteria. II. Changes in fatty acid composition of Bacillus subtilis cells during growth and sporulation (author's transl)]. Nihon Saikingaku Zasshi. 1977 Sep;32(5):703–707. [PubMed] [Google Scholar]
  7. KANEDA T. Biosynthesis of branched chain fatty acids. II. Microbial synthesis of branched long chain fatty acids from certain short chain fatty acid substrates. J Biol Chem. 1963 Apr;238:1229–1235. [PubMed] [Google Scholar]
  8. Kaneda T. Biosynthesis of branched-chain fatty acids. IV. Factors affecting relative abundance of fatty acids produced by Bacillus subtilis. Can J Microbiol. 1966 Jun;12(3):501–514. doi: 10.1139/m66-073. [DOI] [PubMed] [Google Scholar]
  9. Kaneda T. Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol Rev. 1977 Jun;41(2):391–418. doi: 10.1128/br.41.2.391-418.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McCreary D. K., Kossa W. C., Ramachandran S., Kurtz R. R. A novel and rapid method for the preparation of methyl esters for gas chromatography: application to the determination of the fatty acids of edible fats and oils. J Chromatogr Sci. 1978 Aug 10;16(8):329–331. doi: 10.1093/chromsci/16.8.329. [DOI] [PubMed] [Google Scholar]
  11. Nickerson K. W., Bulla L. A., Jr, Mounts T. L. Lipid metabolism during bacterial growth, sporulation, and germination: differential synthesis of individual branched- and normal-chain fatty acids during spore germination and outgrowth of Bacillus thuringiensis. J Bacteriol. 1975 Dec;124(3):1256–1262. doi: 10.1128/jb.124.3.1256-1262.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Overath P., Schairer H. U., Stoffel W. Correlation of in vivo and in vitro phase transitions of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A. 1970 Oct;67(2):606–612. doi: 10.1073/pnas.67.2.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. ROBINOW C. F. Observations on the structure of Bacillus spores. J Gen Microbiol. 1951 Aug;5(3):439–457. doi: 10.1099/00221287-5-3-439. [DOI] [PubMed] [Google Scholar]
  14. Scandella C. J., Kornberg A. Biochemical studies of bacterial sporulation and germination. XV. Fatty acids in growth, sporulation, and germination of Bacillus megaterium. J Bacteriol. 1969 Apr;98(1):82–86. doi: 10.1128/jb.98.1.82-86.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Su C. J., Reusch R., Sadoff H. L. Fatty acids in phospholipids of cells, cysts, and germinating cysts of Azotobacter vinelandii. J Bacteriol. 1979 Mar;137(3):1434–1436. doi: 10.1128/jb.137.3.1434-1436.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Willecke K., Pardee A. B. Fatty acid-requiring mutant of bacillus subtilis defective in branched chain alpha-keto acid dehydrogenase. J Biol Chem. 1971 Sep 10;246(17):5264–5272. [PubMed] [Google Scholar]
  17. Wilson G., Rose S. P., Fox C. F. The effect of membrane lipid unsaturation on glycoside transport. Biochem Biophys Res Commun. 1970 Feb 20;38(4):617–623. doi: 10.1016/0006-291x(70)90625-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES