Abstract
Three lines of evidence indicated that methionine sulfoxide is transported by the high-affinity methionine and glutamine transport systems in Salmonella typhimurium. First, methionine-requiring strains (metE) which have mutations affecting both of these transport systems (metP glnP) were unable to use methionine sulfoxide as a source of methionine. These strains could still grow on L-methionine because they possessed a low-affinity system (or systems) which transported L-methionine but not the sulfoxide. A methionine auxotroph with a defect only in the metP system, which was dependent upon the glnP+ system for the transport of methionine sulfoxide, was inhibited by L-glutamine because glutamine inhibited the transport of the sulfoxide by the glnP+ system. Second, a metE metP glnP strain could be transduced at either the metP or glnP genes to restore its ability to grow on methionine sulfoxide. Third, the transport of [14C]methionine sulfoxide was inhibited by methionine and by glutamine in the metP+ glnP+ strain. No transport was detected in the metP glnP double-mutant strain.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ayling P. D., Bridgeland E. S. Methionine transport in wild-type and transport-defective mutants of Salmonella typhimurium. J Gen Microbiol. 1972 Nov;73(1):127–141. doi: 10.1099/00221287-73-1-127. [DOI] [PubMed] [Google Scholar]
- Ayling P. D., Mojica-a T., Klopotowski T. Methionine transport in Salmonella typhimurium: evidence for at least one low-affinity transport system. J Gen Microbiol. 1979 Oct;114(2):227–246. doi: 10.1099/00221287-114-2-227. [DOI] [PubMed] [Google Scholar]
- Betteridge P. R., Ayling P. D. The role of methionine transport-defective mutations in resistance to methionine sulphoximine in Salmonella typhimurium. Mol Gen Genet. 1975;138(1):41–52. doi: 10.1007/BF00268826. [DOI] [PubMed] [Google Scholar]
- Brot N., Weissbach L., Werth J., Weissbach H. Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2155–2158. doi: 10.1073/pnas.78.4.2155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caldwell P., Luk D. C., Weissbach H., Brot N. Oxidation of the methionine residues of Escherichia coli ribosomal protein L12 decreases the protein's biological activity. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5349–5352. doi: 10.1073/pnas.75.11.5349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dykhuizen D. Genetic analysis of the system that reduces biotin-d-sulfoxide in Escherichia coli. J Bacteriol. 1973 Aug;115(2):662–667. doi: 10.1128/jb.115.2.662-667.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ejiri S. I., Weissbach H., Brot N. Reduction of methionine sulfoxide to methionine by Escherichia coli. J Bacteriol. 1979 Jul;139(1):161–164. doi: 10.1128/jb.139.1.161-164.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ejiri S. I., Weissbach H., Brot N. The purification of methionine sulfoxide reductase from Escherichia coli. Anal Biochem. 1980 Mar 1;102(2):393–398. doi: 10.1016/0003-2697(80)90173-6. [DOI] [PubMed] [Google Scholar]
- Gonzalez Porqué P., Baldesten A., Reichard P. The involvement of the thioredoxin system in the reduction of methionine sulfoxide and sulfate. J Biol Chem. 1970 May 10;245(9):2371–2374. [PubMed] [Google Scholar]
- Hartman P. E. Some improved methods in P22 transduction. Genetics. 1974 Apr;76(4):625–631. doi: 10.1093/genetics/76.4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kadner R. J. Regulation of methionine transport activity in Escherichia coli. J Bacteriol. 1975 Apr;122(1):110–119. doi: 10.1128/jb.122.1.110-119.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kadner R. J. Transport and utilization of D-methionine and other methionine sources in Escherichia coli. J Bacteriol. 1977 Jan;129(1):207–216. doi: 10.1128/jb.129.1.207-216.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mäntsälä P., Laakso S., Nurmikko V. Observations on methionine transport in Pseudomonas fluorescens UK1. J Gen Microbiol. 1974 Sep;84(1):19–27. doi: 10.1099/00221287-84-1-19. [DOI] [PubMed] [Google Scholar]
- Sanderson K. E., Hartman P. E. Linkage map of Salmonella typhimurium, edition V. Microbiol Rev. 1978 Jun;42(2):471–519. doi: 10.1128/mr.42.2.471-519.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith D. A. S-amino acid metabolism and its regulation in Escherichia coli and Salmonella typhimurium. Adv Genet. 1971;16:141–165. doi: 10.1016/s0065-2660(08)60357-0. [DOI] [PubMed] [Google Scholar]
- Truscott R. J., Augusteyn R. C. Oxidative changes in human lens proteins during senile nuclear cataract formation. Biochim Biophys Acta. 1977 May 27;492(1):43–52. doi: 10.1016/0005-2795(77)90212-4. [DOI] [PubMed] [Google Scholar]