Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Dec;148(3):869–876. doi: 10.1128/jb.148.3.869-876.1981

Thiolation and 2-methylthio- modification of Bacillus subtilis transfer ribonucleic acids.

B S Vold, M E Longmire, D E Keith Jr
PMCID: PMC216286  PMID: 6171558

Abstract

Six thionucleosides found in Bacillus subtilis transfer ribonucleic acids were investigated: N6-(delta 2-isopentenyl)-2-methylthioadenosine, 5-carboxymethylaminomethyl-2-thiouridine, 4-thiouridine, 2-methylthioadenosine, N-[(9-beta-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine, and one unknown (X1). The presence of N-[(9-beta-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine was demonstrated based on the affinity of the transfer ribonucleic acid containing it for an immunoadsorbent made with the antibody directed toward N-[9-(beta-D-ribofuranosyl)purin-6-ylcarbamoyl]-L-threonine. The existance of N-[(9-beta-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine in two species of lysine transfer ribonucleic acids was also confirmed by high-resolution mass spectrometry. Four of these thionucleosides--N6-(delta 2-isopenenyl)-2-methylthioadenosine, 2-methylthioadenosine, 5-carboxymethylaminomethyl-2-thiouridine, and the unknown designated X1--occurred only in specific areas in the elution profile of an RPC-5 column and probably affect the chromatographic properties of the transfer ribonucleic acids containing them. In contrast with Escherichia coli, where 4-thiouridine is the most frequent type of sulfur-containing modification, approximately one-third of the sulfur groups in B. subtilis transfer ribonucleic acid are present as thiomethyl groups on the 2 position of an adenosine or modified adenosine residue.

Full text

PDF
869

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agris P. F., Armstrong D. J., Schäfer K. P., Söll D. Maturation of a hypermodified nucleoside in transfer RNA. Nucleic Acids Res. 1975 May;2(5):691–698. doi: 10.1093/nar/2.5.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agris P. F., Koh H., Söll D. The effect of growth temperatures on the in vivo ribose methylation of Bacillus stearothermophilus transfer RNA. Arch Biochem Biophys. 1973 Jan;154(1):277–282. doi: 10.1016/0003-9861(73)90058-1. [DOI] [PubMed] [Google Scholar]
  3. Arnold H. H., Keith G. The nucleotide sequence of phenylalanine tRNA from Bacillus subtilis. Nucleic Acids Res. 1977 Aug;4(8):2821–2829. doi: 10.1093/nar/4.8.2821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bartz J., Söll D., Burrows W. J., Skoog F. Identification of the cytokinin-active ribonucleosides in pure Escherichia coli tRNA species. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1448–1453. doi: 10.1073/pnas.67.3.1448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buck M., Griffiths E. Regulation of aromatic amino acid transport by tRNA: role of 2-methylthio-N6-(delta2-isopentenyl)-adenosine. Nucleic Acids Res. 1981 Jan 24;9(2):401–414. doi: 10.1093/nar/9.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Buu A., Menichi B., Heyman T. Thiomethylation of tyrosine transfer ribonucleic acid is associated with initiation of sporulation in Bacillus subtilis: effect of phosphate concentration. J Bacteriol. 1981 May;146(2):819–822. doi: 10.1128/jb.146.2.819-822.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carbon J., David H., Studier M. H. Thiobases in Escherchia coli Transfer RNA: 2-Thiocytosine and 5-Methylaminomethyl-2-thiouracil. Science. 1968 Sep 13;161(3846):1146–1147. doi: 10.1126/science.161.3846.1146. [DOI] [PubMed] [Google Scholar]
  8. Cerutti P., Holt J. W., Miller N. Detection and determination of 5,6-dihydrouridine and 4-thiouridine in transfer ribonucleic acid from different sources. J Mol Biol. 1968 Jun 28;34(3):505–518. doi: 10.1016/0022-2836(68)90176-9. [DOI] [PubMed] [Google Scholar]
  9. Chuang R. Y., Doi R. H. Isolation of a lysine transfer ribonucleic acid species from Bacillus subtilis by use of chemical modification. Biochim Biophys Acta. 1972 Jun 22;272(1):53–55. doi: 10.1016/0005-2787(72)90032-9. [DOI] [PubMed] [Google Scholar]
  10. Gefter M. L., Russell R. L. Role modifications in tyrosine transfer RNA: a modified base affecting ribosome binding. J Mol Biol. 1969 Jan 14;39(1):145–157. doi: 10.1016/0022-2836(69)90339-8. [DOI] [PubMed] [Google Scholar]
  11. Goehler B., Doi R. H. Presence and function of sulur-containing transfer ribonucleic acid of Bacillus subtilis. J Bacteriol. 1968 Mar;95(3):793–800. doi: 10.1128/jb.95.3.793-800.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hall R. H. N6-(delta 2-isopentenyl)adenosine: chemical reactions, biosynthesis, metabolism, and significance to the structure and function of tRNA. Prog Nucleic Acid Res Mol Biol. 1970;10:57–86. doi: 10.1016/s0079-6603(08)60561-9. [DOI] [PubMed] [Google Scholar]
  13. Hasegawa T., Ishikura H. Nucleotide sequence of threonine tRNA from Bacillus subtilis. Nucleic Acids Res. 1978 Feb;5(2):537–548. doi: 10.1093/nar/5.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henner D. J., Steinberg W. Transfer ribonucleic acid synthesis during sporulation and spore outgrowth in Bacillus subtilis studied by two-dimensional polyacrylamide gel electrophoresis. J Bacteriol. 1979 Nov;140(2):555–566. doi: 10.1128/jb.140.2.555-566.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Keith G., Rogg H., Dirheimer G., Menichi B., Heyham T. Post-transcriptional modification of tyrosine tRNA as a function of growth in Bacillus subtilis. FEBS Lett. 1976 Jan 15;61(2):120–123. doi: 10.1016/0014-5793(76)81017-4. [DOI] [PubMed] [Google Scholar]
  16. Lipsett M. N. Enzymes producing 4-thiouridine in Escherichia coli tRNA: approximate chromosomal locations of the genes and enzyme activities in a 4-thiouridine-deficient mutant. J Bacteriol. 1978 Sep;135(3):993–997. doi: 10.1128/jb.135.3.993-997.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Menichi B., Arnold H. H., Heyman T., Dirheimer G., Keith G. Primary structure of Bacillus subtilis tRNAsTyr. Biochem Biophys Res Commun. 1980 Jul 16;95(1):461–467. doi: 10.1016/0006-291x(80)90760-3. [DOI] [PubMed] [Google Scholar]
  18. Raettig R., Schmidt W., Mahal G., Kersten H., Arnold H. H. Purification and characterization of tRNAMet-f, tRNAPhe and tRNATyr2 from Baccillus subtilis. Biochim Biophys Acta. 1976 Jun 18;435(2):109–118. doi: 10.1016/0005-2787(76)90241-0. [DOI] [PubMed] [Google Scholar]
  19. Rao Y. S., Cherayil J. D. Separation of 35 S-labeled thionucleosides of Escherichia coli and Pseudomonas aeruginosa transfer RNAs on a phosphocellulose column. Biochim Biophys Acta. 1973 Feb 23;299(1):1–7. doi: 10.1016/0005-2787(73)90391-2. [DOI] [PubMed] [Google Scholar]
  20. Rogg H., Brambilla R., Keith G., Staehelin M. An improved method for the separation and quantitation of the modified nucleosides of transfer RNA. Nucleic Acids Res. 1976 Jan;3(1):285–295. doi: 10.1093/nar/3.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shindo-Okada N., Terada M., Nishimura S. Changes in amount of hypo-modified tRNA having guanine in place of queuine during erythroid differentiation of murine erythroleukemia cells. Eur J Biochem. 1981 Apr;115(2):423–428. doi: 10.1111/j.1432-1033.1981.tb05254.x. [DOI] [PubMed] [Google Scholar]
  22. Tockman J., Vold B. S. In vivo aminoacylation of transfer ribonucleic acid in Bacillus subtilis and evidence for differential utilization of lysine-isoaccepting transfer ribonucleic acid species. J Bacteriol. 1977 Jun;130(3):1091–1097. doi: 10.1128/jb.130.3.1091-1097.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vold B. S., Lazar J. M., Gray A. M. Characterization of a deficiency of N6-(delta 2-isopentenyl)-2-methylthioadenosine in the Escherichia coli mutant trpX by use of antibodies to N6-(delta 2-isopentenyl)adenosine. J Biol Chem. 1979 Aug 10;254(15):7362–7367. [PubMed] [Google Scholar]
  24. Vold B. S. Post-transcriptional modifications of the anticodon loop region: alterations in isoaccepting species of tRNA's during development in Bacillus subtilis. J Bacteriol. 1978 Jul;135(1):124–132. doi: 10.1128/jb.135.1.124-132.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vold B. S. Radioimmunoassays for the modified nucleosides N[9-(beta-D-ribofuranosyl)purin-6-ylcarbamoyl]-L-threonine and 2-methylthioadenosine. Nucleic Acids Res. 1979 Sep 11;7(1):193–204. doi: 10.1093/nar/7.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Vold B. Modified nucleosides of Bacillus subtilis transfer ribonucleic acids. J Bacteriol. 1976 Jul;127(1):258–267. doi: 10.1128/jb.127.1.258-267.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wong T. W., Weiss S. B., Eliceiri G. L., Bryant J. Ribonucleic acid sulfurtransferase from Bacillus subtilis W168. Sulfuration with beta-mercaptopyruvate and properties of the enzyme system. Biochemistry. 1970 May 26;9(11):2376–2386. doi: 10.1021/bi00813a024. [DOI] [PubMed] [Google Scholar]
  28. Yamada Y., Ishikura H. The presence of N-[(9-beta-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine in lysine tRNA1 from Bacillus subtilis. J Biochem. 1981 May;89(5):1589–1591. doi: 10.1093/oxfordjournals.jbchem.a133353. [DOI] [PubMed] [Google Scholar]
  29. Yamada Y., Murao K., Ishikura H. 5-(carboxymethylaminomethyl)-2-thiouridine, a new modified nucleoside found at the first letter position of the anticodon. Nucleic Acids Res. 1981 Apr 24;9(8):1933–1939. doi: 10.1093/nar/9.8.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES